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Abstract. Predefined composite operations are handy for efficient mod-
eling, e.g., for the automatic execution of refactorings, and for the in-
troduction of patterns in existing models. Some modeling environments
provide an initial set of basic refactoring operations, but hardly offer any
extension points for the user. Even if extension points exist, the intro-
duction of new composite operations requires programming skills and
deep knowledge of the respective metamodel.
In this paper, we introduce a method for specifying composite opera-
tions within the user’s modeling language and environment of choice.
The user models the composite operation by-example, which enables the
semi-automatic derivation of a generic composite operation specification.
This specification may be used in further modeling scenarios, like model
refactoring and model versioning. We implemented the approach in the
Operation Recorder and performed an evaluation by defining multiple
complex refactorings for UML diagrams.
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1 Introduction

Since modeling is hardly done in terms of single atomic operations but by per-
forming a sequence of operations to reach a desired goal, a well established
approach for specifying and communicating a recurrent sequence of operations
is to give it a name and define a pattern, as is done, e.g., by Gamma et al. [11]
and Fowler et al. [10]. In order to define patterns not only for human interaction,
but also in a machine readable and executable format, composite operations may
be described as model transformations.
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So far, the implementation of such model transformations has mainly been
accomplished by experts, because they require extensive programming effort and
deep knowledge of APIs of modeling environments, metamodels, and dedicated
transformation languages. The contribution of this paper is to overcome this
pitfall. To open the specification of patterns and refactorings to modelers, we
present the Operation Recorder, a front-end for the user-friendly modeling of
composite operations by-example.

The Operation Recorder enables the specification of composite operations by
modeling concrete examples at the model layer, i.e., the same layer the pattern
definition is applied. It allows the user to work within her preferred modeling
language and editor of choice, without leaving the familiar environment. The
examples consist of the initial model, the revised model, and the differences be-
tween them. These differences of the two models are then generalized by the
Operation Recorder and may be applied to arbitrary models containing a pattern
matching the initial model. In the research project AMOR [2], we use the Oper-
ation Recorder in two orthogonal modeling settings, namely for refactoring and
versioning.

Refactoring. Predefined refactoring operations as known from IDEs like
Eclipse4 find their way into modeling environments. Since it is not possible to
provide all refactorings out-of-the-box—this is especially the case if domain spe-
cific modeling languages (DSMLs) are employed—the modeling editor should
offer extension points for editing and adding user-defined refactorings [16]. The
Operation Recorder is used as user-friendly front-end for specifying user-defined
composite operations.

Versioning. The state-based recognition of multiple atomic operations as
one refactoring may also improve model versioning [6]. Since refactorings often
have global effects in the overall model, subsuming a set of atomic changes to
only one change makes it easier to read version histories and to understand model
evolution. In the case of optimistic versioning, where parallel editing of model
artifacts is allowed, the recognition of refactorings improves automatic merge
as discussed in [9]. Even if an automatic merge cannot be performed, manual
conflict resolution is accelerated by providing a more readable conflict report. A
comprehensive model versioning environment is part of our future research.

The paper is organized as follows. Starting with a motivating example in
Section 2 we outline the process of composite operation modeling by-example
in Section 3. Section 4 provides a detailed account of the implementation of the
Operation Recorder and Section 5 summarizes the evaluation results for complex
refactorings for UML diagrams. Section 6 discusses related work and we conclude
with an outlook on our future work in Section 7.

2 Motivating Example

To emphasize our motivation for developing the Operation Recorder, we discuss
the refactoring “Introduce Composite State” for UML statecharts. The concrete
4 http://www.eclipse.org/
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Fig. 1. (a) Initial Phone Statechart. (b) Refactored Phone Statechart. [20]

example illustrating the possible states and transitions of a phone conversation
was taken from Sunyé et al. [20] (cf. Figure 1).

Whenever a hangup event occurs in the unrefactored model shown in Fig-
ure 1(a), the phone moves to the state Idle. The multitude of similar transitions,
which are pointing to the state Idle and which are triggerd by the same event,
allows the application of the refactoring pattern “Introduce Composite State”,
i.e., introducing a composite state and folding the hangup transitions to one
single transition as depicted in Figure 1(b). The modification consists of the
following changes:

1. A composite state named Active is created.
2. All states except Idle are moved into Active.
3. The outgoing hangup transitions of these states are folded to one single

transition which leaves the composite state Active.
4. The transition lift is split to an incoming transition of Active and to the

initial pseudostate of Active.

In most modeling tools, the general specification of such a composite opera-
tion is only possible by an implementation in a textual programming language,
which demands dedicated programming skills. Based on our experience when
developing the “Introduce Composite State” refactoring in Java, the solution
comprises nearly 100 lines of code implementing the pure refactoring logic, not
counting preconditions on the applicability of the refactoring pattern and code
realizing a front-end for the application of the refactoring pattern by the user.

Another alternative to specify composite operations is the use of dedicated
model transformation languages. This enables the development of composite
operations in a more compact form by, e.g., applying declarative rule-based lan-
guages. In this way, single transformation steps may be described declaratively
by transformation rules. However, specifying a set of transformation rules and



their interactions is currently supported by a few transformation engines only,
and requires a deep understanding of the transformation process. Furthermore,
model transformation approaches are rarely included in current modeling envi-
ronments. Thus, tool adapters are required to use these technologies and the
users have to switch to a new environment, which again calls for dedicated
knowledge.

Modelers, as the potential users of the composite operation specification fa-
cilities are familiar with the notation, semantics, and pragmatics of the modeling
languages they use in daily business. They are not experts, however, in program-
ming languages, transformation techniques, as well as specific APIs.

With the Operation Recorder we aim at providing a tool, which makes the
specification of composite operations practicable to every modeler.

3 By-Example Operation Specification at a Glance

Composite operations may be described by a set of atomic operations, i.e., create,
update, delete, and move which are executed on a model in a specific modeling
scenario, i.e., adhering to specific preconditions [24]. Furthermore, to enable the
detection of occurrences of the specified composite operation in generic change
scripts, we need to include also postconditions to the composite operation spec-
ification.

An immediate way to realize composite operation specification by-example
is to record each user interaction within the modeling environment as proposed
in [18] for programming languages. However, this would demand an intervention
in the modeling environment, and due to the multitude of modeling environ-
ments, we refrain from this possibility. Instead, we apply a state-based compar-
ison to determine the executed operations after modeling the initial model and
the final model. This allows the use of any editor without depending on editor
specific modification recording. To overcome the imprecision of heuristic state-
based approaches, a unique ID is automatically assigned to each model element
before the user illustrates the changes. Moreover, the Operation Recorder is de-
signed in such a way to be independent from any specific modeling language, as
long as it is based on Ecore [7].

Following our design rationale, we propose a two-phase by-example operation
specification process as shown in Figure 2. In the following, we discuss this two-
phase specification process step-by-step.

Phase 1: Modeling. In the first step, the user models the initial situation in
her familiar modeling environment, i.e., the model required in order to apply the
composite operation. The output of this step is called initial model. In the second
step, each element of the initial model is automatically annotated with an ID,
and a so-called working model, i.e., a copy of the initial model for demonstrating
the composite operation by applying changes, is created. The IDs preserve the
relationship of the original elements in the initial model and changed elements in
the revised model. Doing so, we are able to precisely detect all atomic changes,
i.e., also element moves. Consequently, the generated match between the initial



model and the revised model is sound and complete. In the third step, the user
performs the complete composite operation on the working model, again in her
familiar modeling environment by applying all necessary atomic operations. The
output of this step is the revised model, which is together with the initial model
the input for the second phase of the operation specification process.
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Fig. 2. By-Example Operation Specification Process

Phase 2: Configuration & Generation. Due to the unique identifiers
of the model elements the atomic operations of the composite operation may
be determined automatically in Step 4 using a state-based comparison. The
results are saved in the diff model. Subsequently, an initial version of pre- and
postconditions of the composite operation is inferred in Step 5 by analyzing
the initial model and revised model, respectively. Usually, the automatically
generated conditions from the example are too strong and do not express the
intended pre- and postconditions of the composite operation. They only act
as a basis for accelerating the operation specification process and have to be
refined by the user in Step 6. In particular, parts of the conditions may be
activated and deactivated within a dedicated environment with one mouse click.
Generated conditions may be modified by the user and additional conditions may
be added. After the configuration of the conditions, the Operation Specification
Model (OSM) is generated in Step 7, which consists of the diff model and the
revised pre- and postconditions. Finally, from the OSM, specific artifacts may
be generated in Step 8 such as refactoring wizards which allow the automatic
execution of refactorings. Another use case of the OSM would be to directly
act as a template for change scripts for finding the applications of composite
operations between different model versions.
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4 By-Example Operation Recorder in Action

In the previous section we illustrated the operation specification process from
a generic point of view. In the following, we define the refactoring “Introduce
Composite State” from Section 2 showing the operation specification process
from the user’s point of view. The specification process is supported by the 8-
step Operation Recorder using the front-end depicted in Figure 3 (for details on
the implementation of the front-end cf. [1].

Step 1: Create initial model. The modeler starts with modeling the initial
situation in the upper left area labeled Initial (cf. Figure 3). For this task,
the modeler may apply any editor of her choice, since the Operation Recorder
is independent of editor-specific operation tracking, using a solely state-based
comparison. In this step every model element, which is necessary to show the
composite operation, has to be introduced. It is not necessary to draw every
state of the diagram shown in Figure 1(a). Therefore, in the Initial area only
those states are depicted, which will later on be modified differently. The first
of those is the state Idle, which will remain outside the composite state we will
add later. Second, the state DialTone, which will be moved to the newly added
composite state acting as first state and finally the state Dialing, which only will
be moved to the composite state loosing its transition to Idle. There is no need to



model e.g. the state Connecting shown in Figure 1(a), since it is equally modified
like Dialing. For such states, which have to be handled equally, the Operation
Recorder provides techniques to define iterations in the later configuration phase.

Step 2: Copy initial model. When the modeler finishes the initial model
she confirms it by pushing the button Start editing. This initiates the automatic
copy process which adds a unique ID to every model element of the initial model
before the working copy is created.

Step 3: Perform updates. After the ID-annotated working copy is created,
it is displayed in the upper right area of the front-end, named Revised. Now,
the modeler performs each operation the composite operation consists of on
the revised model. In our example, the modeler has to add a composite state
named Active, move the single state DialTone and Dialing into it, introduce a
new initial state in Active, connect it with DialTone and change or remove the
other transitions. As soon as the composite operation is completely executed, the
modeler finalizes the modeling phase by pushing the Start configuration button.

Step 4: State-based comparison. In this step, the comparison between
the initial model and the revised model is done to automatically identify the
previously executed changes. When the comparison is completed, the detected
differences show up in the upper center area named Differences.

Step 5: Imply conditions. Next, the Operation Recorder automatically im-
plies the preconditions from the initial model and the postconditions from the
revised model. The condition generation process for the pre- and the postcon-
ditions is similar. For each model element in the respective model, a so-called
template is created. A template describes the role, a model element plays in the
specific composite operation. When executing or detecting a defined compos-
ite operation, concrete model elements are evaluated against and subsequently
bound to these templates. In the front-end the pre- and postconditions are illus-
trated on the lower left and lower right area, respectively. Each template contains
conditions displayed beside the template names. Each of the automatically gen-
erated condition constrains the value of a specific feature. In our example, the
area Preconditions shows three different templates in the first level for the model
elements Idle, DialTone, and Dialing and their respective preconditions. These
templates have a user-changeable symbolic name, e.g., SingleState 1, and are ar-
ranged in a tree to indicate their containment relationships. Templates may also
be used as a variable in condition bodies to generically express a reference to
other model elements or their values. We use the syntax #{Transition 3}.event
to access the event property of the first element matching the template Tran-
sition 3. To reference all matching elements in a conditions body the syntax
#[Template name] is used. The scope of a template is either the initial model
or the revised model. Nevertheless it is possible to access the template of the
opposite model in the conditions using the prefixes initial: and revised:,
respectively.

Step 6: Edit conditions. Usually, the conditions automatically generated
in the previous step are too strong and do not express the intended pre- and
postconditions of the composite operation. They only act as a kickstart accel-



erating the operation specification process and have to be manually refined in
this step. The Operation Recorder offers three different instruments to adapt the
generated conditions.

First, the modeler may relax or enforce conditions. This is simply done by
activating or deactivating the checkboxes in front of the respective templates or
conditions. If a template is relaxed all containing conditions are deactivated. By
default, conditions constraining string features and null-values are deactivated,
as in our experience they are not relevant in most of the cases. In the running
example, four templates and three conditions in preconditions as well as three
templates and two conditions in the postcondition have to be relaxed, addition-
ally to the by-default deactivated conditions. For instance, in the preconditions
the templates representing the initial state and implicitly its contained transition
as well as the template representing the reflexive transition dial in state Dialing
are not relevant and have to be relaxed properly. The same is true for the con-
dition incoming->includesAll(#{Transition 0}) in template Idle as it is not
necessary that this state has the incoming transition matching Transition 0.

Second, the modeler may modify conditions by directly editing them. For
our example it is necessary to specify that a state which is moved into the
composite state has to own the event which is folded as outgoing transition (in
our example hang up). For this reason, the condition in the preconditions and the
postconditions highlighted in bold font are modified to express this constraint.

Finally, users may adapt the composite operation specification by augment-
ing, e.g., defining iterations and annotating necessary user input for setting pa-
rameters of the composite operations. In our example, the modeler has to intro-
duce one iteration for the template SingleState 3. This iteration specifies that
the two operations executed on this template have to be repeated for all its
matching model elements. In other words, defining this iteration, all model ele-
ments containing the transition to be folded are moved to the composite state.
Further, the modeler introduces a user input for the property name of template
CompositeState 0 to indicate a value which has to be set by the user of the
refactoring. Apparently, iterations may only be specified for templates from the
initial model and user input for features of templates from the revised model.
To ensure the syntactic and semantic correctness of all conditions, the modeler
may test all conditions against the initial or revised model by pushing the Test
conditions button. A failing condition indicates a wrongly specified constraint,
because the conditions have to match at least the example models.

Step 7: Generate OSM. To finalize the operation specification, the mod-
eler pushes the Finish button. This initiates the generation of the OSM. This
model contains all necessary information for further usage like its detection of
occurrences in generic difference models or its execution in various specific mod-
els. Operation specifications are conform to the metamodel depicted in Fig-
ure 4. The class CompositeOperationSpecification contains general informa-
tion about the operation like the name, a description as well as the initial and
revised model, the pre- and postconditions, the iterations, and the differences.
For the initial and the revised model kept in the attributes initialModel and
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revisedModel, the class CompositeOperationSpecification holds a reference
to ConditionsModel which consists of a root Template representing the previ-
ously mentioned root object of the initial or revised model’s conditions. Each
template may have a number of subtemplates corresponding to the containment
hierarchy of the elements in the initial or revised model. The specific model
element in the initial or revised model is referenced in representative. Fur-
thermore, a Template is specified by a list of custom conditions and feature
conditions. FeatureConditions constrain the value of a specific feature and are
generated automatically in Step 5.

Figure 5 illustrates an excerpt of the object diagram representing the OSM
for the previously described statechart example. This diagram highlights some
aspects, like the introduced iteration, the template hierarchy and its references
to the concrete model elements as well as an instance of a FeatureCondition



Listing 1.1. Generated OCL code
1 . . .
2 attr s i n g l e S t a t e 1 : S i ng l eS t a t e = . . . /∗ s e l e c t e d by user ∗/
3 attr t r a n s i t i o n 3 : Trans i t i on = . . . /∗ s e l e c t e d by user ∗/
4 . . .
5 s e l f . i n c l u d e s A l l ( s e l f . outgo ingTrans i t ion−>s e l e c t (
6 event = t r a n s i t i o n 3 . event and ta rg e t = s i n g l e S t a t e 1
7 and source = s e l f ) )

Listing 1.2. Generated Refactoring Code
1 method introduceCompos iteState ( S t r ing cs name ,
2 Trans i t i on t r a n s i t i o n 3 , S i ng l eS ta t e s i n g l e S t a t e 1 ){
3 . . .
4 //Create composite s t a t e
5 CompositeState cs = new CompositeState ( cs name ) ;
6 . . .
7

8 // Sh i f t S ta tes into composite s t a t e
9 I t e r a t o r i t e r = s t a t e s . s e l e c t ( s | cond ( s ) ) . i t e r a t o r ( ) ;

10 while ( i t e r . hasNext ( ) ){
11 State s t a t e = i t e r . hasNext ( ) ;
12 cs . ownedStates ( ) . add ( s t a t e ) ;
13 s t a t e . outgoing ( ) . remove ( s t a t e . outgoing . s e l e c t ( t |
14 t . event = t r a n s i t i o n 3 . event and
15 t . t a r g e t = s i n g l e S t a t e 1 ) ;
16 . . .
17 }
18

19 . . . //Create add i t i ona l elements and l i n k them proper ly
20 }

for the feature name. All of these components have their counterpart in the the
front-end already presented in Figure 3.

Step 8: Generate specific artifacts. The last step of the process is the
generation of specific artifacts out of the OSM for the utilization outside the Op-
eration Recorder. To execute the refactoring specification depicted in Figure 3,
the user has to choose which single state remains outside the composite state and
which single state should be transformed to the starting node within the com-
posite state. This is done by simply binding the respective single states to the
templates SingleState 1 and SingleState 2. To keep this process user-friendly,
users do not have to bind model elements based on template names directly.
Instead, users are referred to the example initial model and have to assign con-
crete elements to the elements of this example. Then, the direct binding to the
templates is induced automatically. Based on this binding the concrete transi-
tion element matching Transition 3 is evaluated. As an example for a generated
artifact, in Listing 1.1 the OCL code evaluating all model elements for which
the iteration has to be applied (i.e., which match the template SingleState 3 ) is
illustrated. The code implementing the iteration itself is shown in Listing 1.2.



5 Evaluation

For evaluating the effort necessary to define new composite operations with the
Operation Recorder we performed a case study with the objective to specify five
refactorings for the UML class diagram and two refactorings for the UML state-
chart (cf. Table 1). Those well-known refactorings were adapted—if necessary—
for the application on models as those refactorings are mostly defined for the
application on code. The complexity of the refactorings varies from simple, e.g.,
“Move Attribute”, to complex, e.g., “Introduce Composite State”. Due to space
limitations, we kindly refer to our project page for a detailed description [1].

The values shown in Table 1 reflect the effort for the user to specify the refac-
torings. The #Template column refers to the number of templates derived from
the initial model and for the revised model, respectively, in order to establish the
pre- and postconditions. The #Conditions/#Selected column contains the total
number of pre- and postconditions as well as the number of initially selected
conditions. These numbers are strongly related to the size of the metamodel em-
ployed for the editor. In our experiments, we used specialized UML editors which
allowed us to focus on efficiently testing the refactorings. For example, if we had
used the full UML2 editor for “Move Attribute” we would have obtained again
4 templates, but more than 100 conditions. To increase readability, we plan to
integrate general filters in the Operation Recorder as well as to provide exten-
sion points for metamodel specific filters, which allow to hide unused metamodel
features.

The column #Diffs shows the number of differences between the initial model
and the revised model. The concrete value depends on the way a refactoring is
modeled. We asked for example two modelers to specify the “Introduce Compos-
ite State” refactoring starting from the same initial model. Although their revised
models contained the same elements, the one performed 9 changes whereas the
other needed 14 changes. The first reused the existing elements of the model and
modified them accordingly, whereas the other deleted them and introduced new
elements.

The configuration effort is reflected by the remaining columns of Table 1. The
#Relax/#Enforce column describes how many conditions have to be (un)selected
manually by the user. #Modifications refers to the number of edits which have to
be performed and the last column shows the number of introduced iterations. In
general, our case study showed, that the configuration effort mostly consists of
relaxing conditions which is done with some clicks. The few condition modifica-
tions are typically needed to refer to properties of other templates and therefore
are easily accomplished. Even for more complicated refactorings, e.g. “Extract
Superclass”, only a few configuration steps are necessary.

Overall, the Operation Recorder approach allowed a very intuitive specifica-
tion of the refactorings where the tasks which have to be performed by a human
user are straightforward. In future work, we plan to perform a more extensive
evaluation with a wide range of modelers with different levels of modeling expe-
riences.
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mvAtt 4 4 13/3 13/3 1 3/0 3/1 0 1 0
convSing 3 4 8/2 11/4 2 2/2 2/2 1 1 0
encVar 3 7 8/3 16/8 4 3/0 2/4 0 3 0
repDV 3 5 8/3 16/6 4 3/0 2/2 0 1 0
extSC 5 5 16/4 18/6 6 0/2 0/0 1 2 1
intCS 11 13 41/27 48/32 9 7/0 5/0 1 1 1
merge 10 8 36/22 29/17 6 6/0 4/0 2 0 1

Table 1. Refactorings: Move Attribute (mvAtt), Convert to Singleton (convSing),
Encapsulate Variable (encVar), Replace Data Value with Object (repDV), Extract
Superclass (extSC), Introduce Composite State (intCS), Merge States (merge)

6 Related Work

In this section, we give a short overview of work related to our by-example
operation specification approach organized in the categories composite operations
for models and model transformation by-example.

Composite operations for models. Most existing approaches for defining
composite operations focus solely on model refactorings. One of the first inves-
tigations in this area was done by Sunyé et al. [20] who define a set of UML
refactorings on the conceptual level by expressing pre- and post-conditions in
OCL. Boger et al. [5] present a refactoring browser for UML supporting the au-
tomatic execution of pre-defined UML refactorings within a UML modeling tool.
While these two approaches only focus on pre-defined refactorings, approaches
by Porres [17], Zhang et al. [24], Kolovos et al. [13], and Verbaere et al. [22] allow
the introduction of user-defined refactorings in dedicated textual programming
languages. A similar idea is followed by Mens [15] and Biermann et al. [4] who
use graph transformations to describe the refactorings within the abstract syn-
tax of the modeling languages. The application of this formalism comes with the
additional benefit of formal analysis possibilities of dependencies between differ-
ent refactorings. In any case, the definition of new refactorings requires intense
knowledge of the modeling language’s metamodel, of special APIs to process the
models, and finally of dedicated programming language. In other words, very
specific expertise is demanded.

The Operation Recorder yields an orthogonal extension of existing approaches
by providing a front-end to the modeler for defining the refactorings by modeling
examples. The otherwise manually created refactoring descriptions are automat-
ically generated from which representations in any language or formalism like
graph transformation may be derived. Then it is possible to apply formal meth-
ods for analyzing the dependencies between refactorings as proposed by Mens.



Model transformation by-example. Defining model transformations rules
by using the abstract syntax of graphical modeling languages comes on the one
hand with the benefit of the generic applicability. On the other hand the creation
of such transformation rules is often complicated and their readability is much
lower compared to working with the concrete syntax as has been reported in sev-
eral papers [3, 8, 19, 21]. As a solution, the usage of the concrete syntax for the
definition of the transformation rules has be proposed like in ATOM3 [8]. More
recently, Baar and Whittle [3] discuss requirements and challenges how to define
transformation rules in concrete syntax within current modeling environments. A
specific approach of describing transformation rules for web application models
is presented by Lechner [14]. In the field of aspect oriented modeling, transfor-
mations are also required for weaving aspect models into base models. Whittle
et al. [23] present for example how to describe aspect composition specifica-
tions for UML models by using their concrete syntax. Summarizing, all these
approaches significantly contribute to the field of the user-friendly development
of transformations.

Strommer and Wimmer [19] as well as Varró [19] go one step further by
defining transformations purely by-example, i.e., instead of developing transfor-
mation rules, an example input model and the corresponding output model are
given. From these example pairs, the general transformation rules are derived
by a reasoning component. Currently, the focus lies on model-to-model transfor-
mations between different languages, e.g., class diagrams to relational models.
In-place transformations required for composite operations such as refactorings
have not been considered by by-example approaches for models.

With the Operation Recorder we fill the gap between composite operation def-
inition approaches and model transformation by-example approaches. Although
the need for introducing refactorings by the user of modeling tools as well as
the need for describing transformations in a more user-friendly way have been
frequently reported, to the best to our knowledge, the Operation Recorder is the
first attempt to tackle the by-example definition of model transformations rep-
resenting composite operations such as refactorings. The only comparable work
we are aware of is [18] which allows to define composite operations by-example
for program code using the Squeak Smalltalk IDE. Although their general idea
is similar to ours, three fundamental design differences exist, namely the Oper-
ation Recorder operates on models, is independent from any specific modeling
language, and may be employed for any modeling environment.

7 Conclusions and future work

In this paper we introduced a tool for defining composite operations, such as
refactorings, for software models in a user-friendly way. Modeling in the user’s
modeling language and in her environment of choice underlines this ease of use.
Our by-example approach prevents modelers from acquiring deep knowledge
about the metamodel and dedicated model transformation languages. The re-
sults of our evaluation emphasize the usability of our Operation Recorder because



of minimizing the user’s effort when defining such complex operations. The inte-
gration and usage of our Operation Recorder as component in a model versioning
system leads to a reduction of conflicts and enables an intelligent conflict reso-
lution.

In future work, we plan to enable the reuse of already defined refactorings for
composing more complex refactorings. Preconditions of refactorings sometimes
may include negative application conditions. For this reason, we will integrate
the possibility of modeling forbidden model elements in order to match for non-
existence of elements within preconditions. In a further step, translating opera-
tion specification models to graph transformations allows the critical pairs anal-
ysis and, thus, the detection of conflicts between refactorings. Finally, we would
like to extend the operation specification model by adding smells—indicating
problematic model fragments [12]—that may be solved using the defined refac-
torings.
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21. D. Varró. Model Transformation by Example. In 9th Int. Conf. on Model Driven
Engineering Languages and Systems, MoDELS’06, volume 4199 of LNCS. Springer,
2006.

22. M. Verbaere, R. Ettinger, and O. de Moor. JunGL: A Scripting Language for
Refactoring. In 28th Int. Conf. on Software Engineering, ICSE’06. ACM, 2006.
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