
On Models and Ontologies -
 A Layered Approach for Model-based Tool Integration

Gerti Kappel1, Elisabeth Kapsammer2, Horst Kargl1, Gerhard Kramler1,
Thomas Reiter2, Werner Retschitzegger2, Wieland Schwinger3, and Manuel Wimmer1

1 Business Informatics Group, Vienna University of Technology
{gerti|kargl|kramler|wimmer}@big.tuwien.ac.at

2 Information Systems Group, Johannes Kepler University Linz
{ek|tr|wr}@ifs.uni-linz.ac.at

3 Dept. of Telecooperation, Johannes Kepler University Linz
wieland.schwinger@jku.ac.at

Abstract. The exchange of models among different modeling tools ever more
becomes an important prerequisite for effective software development
processes. Due to a lack of interoperability, however, it is often difficult to use
tools in combination, thus the potential of model-driven software development
cannot be fully exploited. This paper proposes ModelCVS, a system which
enables tool integration through transparent transformation of models between
different tools’ modeling languages expressed as MOF-based metamodels.
ModelCVS provides versioning capabilities exploiting the rich syntax and
semantics of models. Concurrent development is enabled by storing and
versioning software artifacts that clients can access by a check-in/check-out
mechanism, similar to a traditional CVS server. Semantic technologies in terms
of ontologies are used together with a knowledge base to store machine-
readable, tool integration relevant information, thus allowing to minimize
repetitive effort and partly automate the integration process.

1 Introduction

The shift from code-centric to model-centric software development places models as
first-class entities in software development processes. A rich variety of tools is
available supporting different tasks, such as model creation, model simulation, model
checking, and code generation. Consequently the exchange of models among
different modeling tools becomes an important prerequisite for effective software
development processes. Due to a lack of interoperability, however, it is often difficult
to use tools in combination, thus the potential of model-driven software development
cannot be fully exploited. To illustrate the specific challenges we want to tackle in
this paper, we consider a real-world scenario encountered in a project, which involves
a partner of Computer Associates (CA) and the Austrian Ministry of Defense. This
scenario also serves as a running example throughout this paper and assumes the
integration of three tools, CA’s CASE tool AllFusion Gen (Gen for short), the UML
tool Rational Software Modeler, and the Oracle BPEL Process Manager. Covering a
wide range of modeling tasks, Gen is a CASE tool supporting a proprietary modeling

language, with which many existing applications have been developed. UML should
be employed for new projects to link up with current technologies, and finally BPEL
is required for developing certain web-enabled workflow applications. Without
proper infrastructure support, integration of these tools poses severe problems as
discussed in the following.

First of all, the model exchange formats of these tools are different. The differences in
representation – textual data by Gen, XMI by the UML tool, and XML by the BPEL
tool – are the least problem, since specific tool adaptors can cope with that. A bigger
problem, however, is difference in scope. Gen supports a variety of modeling
domains, ranging from database via GUI to the definition of functions. UML also has
a rather broad scope, which is a subset of Gen’s. BPEL, in contrary, has a very
limited scope focusing on process modeling, which is related to Gen’s process model
and UML’s activity diagram. Therefore, it is not possible to simply take a Gen model
and directly translate it to UML or BPEL as only parts of it can be translated.
Conversely, to allow for a translation back to Gen, precautions need to be taken to
enable reassembly of any changed parts with the overall Gen model. No less of a
problem are the differences in syntax and semantics. E.g., the control flow primitives
of UML activity diagrams [12] and BPEL are somewhat different, although they
express the same concepts. Furthermore, the metamodels of Gen and UML are very
large and complex. For instance, Gen’s metamodel comprises more than 800 classes
and the metamodel of UML2 more than 260 classes. Even if specific implementation
technology for model transformation is used, e.g., the forthcoming QVT (Query/
Views/Transformations)-standard [22], it is clear that implementing a transformation
for Gen and UML will require a lot of effort. Hence, the problem is not only to
implement a single translation, but to deal also with scalability problems. If BPEL is
added to the tool chain, two new translations have to be implemented. If even more
tools need to be integrated, simple point-to-point integration quickly comes to its
limits and the need for more powerful transformation architectures arises.

Considering these challenges and based on experiences gained in various integration
scenarios [11], [15], [19], [24], [26], we are currently realizing ModelCVS, a system
which enables tool integration through transparent transformation of models between
different tools’ modeling languages expressed as MOF-based metamodels. In
addition, ModelCVS will support versioning capabilities exploiting the rich syntax
and semantics of models. It enables concurrent development by storing and
versioning software artifacts that clients can access by a check-in/check-out
mechanism, similar to a traditional CVS server. Semantic technologies in terms of
ontologies are used together with a knowledge base to store machine-readable,
integration relevant information, thus allowing to minimize repetitive effort and
partly automate the integration process.

The remainder of the paper is structured as follows. Section 2 lays out the core
concepts of ModelCVS while Section 3 proposes the system’s architecture together
with a simple example demonstrating a prototypical implementation. An overview of
related work is given in Section 4, followed by concluding remarks in Section 5.

2 Layered Approach to Tool Integration

To address the challenges identified above for providing interoperability between
tools, the approach taken to the realization of ModelCVS (cf. Figure 1) is separated
into three distinct conceptual layers that enable the integration of models produced by
adjacent modeling tools.

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

class class class

class

classclass

classClass

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

classclass classclass classclass

classclass

classclassclassclass

classclass
Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

class class class

class

classclass

classClass

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

classclass classclass classclass

classclass

classclassclassclass

classclass

Tool B
(e.g. Oracle BPEL
Process Manager)

<XML>
<tag1>
<tag2>
</tag2>
</tag1>
<tag2>
</tag2>
...

</XML>

<XML>
<tag1>
<tag2>
</tag2>
</tag1>
<tag2>
</tag2>
...

</XML>

<XML>
<tag1>
<tag2>
</tag2>
</tag1>
<tag2>
</tag2>
...

</XML>

<XML>
<tag1>
<tag2>
</tag2>
</tag1>
<tag2>
</tag2>
...

</XML>

<XML>
<tag1>
<tag2>
</tag2>
</tag1>
<tag2>
</tag2>
...

</XML>

<XML>
<tag1>
<tag2>
</tag2>
</tag1>
<tag2>
</tag2>
...

</XML>

Tool A
(e.g. Gen)

Tool C
(e.g. Rational

Software Modeler)

(3)
Tool Integration
Knowledge Base

(1)
Architectural Model Integration Patterns

(2)
Ontology-Based Metamodel Integration

and Semantic Versioning

Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

class class class

class

classclass

classClass

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

classclass classclass classclass

classclass

classclassclassclass

classclass

Fig. 1. Layered Tool Integration Approach

The bottom layer (1) is formed by architectural model integration patterns that
ensure openness, scalability, and evolvability of our solution. Further elaborated on in
subsection 2.1, these will serve as a basis to define specific bridging tasks and to
develop appropriate bridging operators. The second layer (2) deals with the use of
semantic technologies in the form of ontologies for the integration of tool
metamodels, as well as for semantic versioning capabilities. The topic of semantic
versioning, however, will not be further expanded in this paper (cf. [16]). Subsection
2.2 addresses the integration problem at the semantic level using ontologies in more
detail and shows how automation support can be achieved. Top layer (3) aims at
providing reuse capabilities in the form of a tool integration knowledge base, which
enhances support for metamodel bridging (cf. subsection 2.3).

2.1 Patterns for Model-based Tool Integration

The basis for our solution to model-based tool integration is a set of integration
patterns that define requirements for the bridging language, which contains bridging
operators that specifically support the identified integration patterns at a suitable
abstraction level, and hence can be more efficiently used than, e.g., generic model
transformation languages [24]. By finally deriving model transformation code to
enforce specific bridging semantics on models, the bridging language is made
executable. For reasons of brevity we resort to only elaborating on two proposed
integration patterns, namely translation and modularization, dealing with openness
and scalability issues. Other patterns relevant for model-based tool integration include
the alignment of models, which allows to keep models of conceptually disparate
metamodels synchronized, as well as metamodel versioning aiming at supporting the
evolution of metamodels. For a description of these patterns we refer to [16].

Metamodel translation. The basic case of tool integration occurs when two different
tools’ modeling languages overlap to a large extent. This means, that both modeling
languages cover the same or very similar domains, in a way that semantically
equivalent concepts can be identified in either metamodel so that models can be

translated accordingly. As an example, we refer to the joint modeling of a workflow:
One of the modelers employs a dedicated BPEL modeling tool, whereas the other
colleague makes use of UML activity diagrams. Both modelers are able to
transparently check-out versions of the latest model, edit it, and check it in again
without having to deal with modeling languages other than their own, as the language
heterogeneity between modeling languages is implicitly translated by ModelCVS.

Variations of this pattern address directionality and completeness of translation. A
translation may be bidirectional, allowing two-way transformations between
metamodels. In case a tool, for instance a code generator, is purely consuming and
not producing models, unidirectional translations suffice. In case modeling languages
do not entirely overlap, meaning that some concepts expressible in one modeling
language cannot be expressed in another, a translation may be lossy. A solution to
solve this problem is to explicitly store information that would get lost in the course
of a transformation and to reincorporate it when performing the roundtrip. A further
variation, which is advisable in case multiple tools with similar domains have to be
integrated, is to construct a so-called pivot metamodel, which can be seen as
representing a universal language covering a certain domain. In practice, however,
such a universal language encompassing all possible concepts that can occur in a
certain domain is hard to find. Nevertheless, finding a pivot metamodel for a specific
enough modeling domain can be feasible, allowing to reduce the amount of mappings
required when translating between n-many tools from O(n²) to O(n). Figure 2 shows
the translation approach involving the process metamodel of Gen (MMGen), UML’s
activity diagram metamodel (MMUML-AD), and BPEL’s metamodel (MMBPEL).

Gen Tool UML Tool BPEL Tool

MMGen MMUML-AD MMBPEL

MMWF
Gen2UML-AD

Translation

Gen2WF
Translation

UML-AD2WF
Translation

BPEL2WF
Translation

Fig. 2. Metamodel Translation

The domain common to all three could be described in a generic, tool independent
workflow metamodel (MMWF), which serves as a pivot facilitating tool integration in
a scalable way. As starting point, lets assume that a Gen2UML-AD translation already
existed and that for integration of further metamodels like MMBPEL, the establishment
of a pivot metamodel was chosen. Then a specific requirement on bridging operators
resulting from this scenario is re-usability of the existing bridge Gen2UML-AD for
construction of the pivot metamodel and the translations Gen2WF and UML-AD2WF.
Now the pivot metamodel MMWF can be used in order to generate a translation to
MMBPEL, namely BPEL2WF.

Metamodel modularization. The modularization pattern addresses the scalability
issue of two related integration scenarios. On the one hand, to fulfill the scalability
requirement, the effectiveness of a tool integration process may not be affected by the
size of the metamodels involved. Hence, a model-based tool integration approach

must allow to deal with large, monolithic tool metamodels in a manageable way. As
an example, the integration of two large tool metamodels, like those of UML and
Gen, has to be supported in a way that keeps the integration task comprehensible. On
the other hand, scalability is required when it comes to the integration of tools with a
varying scope, regarding the domain specificity of the underlying modeling
languages. As an example, it should be possible to integrate a UML tool with a BPEL
tool. Thereby, the domain specific BPEL tool will conceptually overlap with the
domain covered by the UML tool to a certain extent, only. Nevertheless, the
integration of the BPEL metamodel with the overlapping part of the UML metamodel
should not become unwieldy. To keep the integration of large metamodels with
varying scopes manageable, modularization enables the decomposition of these
metamodels according to certain concerns, resulting in smaller metamodels, so-called
metamodel fragments, each expressing a certain aspect of the entire metamodel.
Analogous to the decomposition of a metamodel, models conforming to such a
metamodel are modularized accordingly to allow model exchange in a scalable way.

The example depicted in Figure 3 shows the integration of tools with differing scopes
using modularization. The top section of the figure shows the Gen metamodel
(MMGen) modularized into several smaller fragments representing more specific
domains (MMGenGUI, MMGenWF, MMGenClasses, and MMGenStates). As shown, the
fragments may overlap each other, which can result in interdependencies that shall be
taken care of in a transparent way, as described in the alignment example in [16]. The
bottom left part of the figure shows the integration of domain specific GUI and BPEL
modeling tools, whose metamodels are directly mapped to metamodel fragments of
the Gen tool. Similar to the modularization of MMGen, the bottom right part of the
figure illustrates a UML tool’s metamodel (MMUML) being modularized (MMUML-AD,
MMUML-CD, and MMUML-SM). The integration of large tools is made possible in a
scalable way, as the metamodel fragments of either tool covering semantically equal
domains are mapped onto each other instead of mapping the original huge
metamodels.

Gen Tool

GUI Tool BPEL Tool UML Tool

MMGenGUIMMGenGUI

MMUML-ADMMUML-AD MMUML-CDMMUML-CD MMUML-SMMMUML-SM

MMGUI MMBPEL MMUML

MMGen

GUI2GenGUI
Translation

BPEL2GenWF
Translation

UML-AD2GenWF
Translation

Modularization

Modularization

UML-CD2GenClasses
Translation

UML-SM2GenStates
Translation

MMGenWFMMGenWF MMGenClassesMMGenClasses MMGenStatesMMGenStates

Fig. 3. Metamodel Modularization

At check-out time, models conforming to fragments have to be reassembled. This
implies that links between model elements that have been cut off during
modularization have to be re-established. The rules specifying how the models should
be reassembled have to be derived from the applied bridging operators. To enable

reassembly, information about linked model elements must be explicitly stored.

2.2 ModelCVS Semantic Infrastructure

In the following, the core functionalities of ModelCVS are laid out, which are
founded on the use of ontologies to express the semantics of modeling languages. We
believe that in doing so, semantic technologies can yield significant benefits for
effectively driving a model-based tool integration solution as envisioned with
ModelCVS.

As a strictly manual bridging specification can become an error prone task,
ModelCVS offers automation support to do so. The following paragraphs describe a
sequence of steps showing how ModelCVS’ semantic infrastructure can be utilized.
For the sake of simplicity, in the following our running example focuses on the
metamodels of BPEL and UML Activity Diagrams to be integrated, only. Details on
Figure 4, which generally depicts our setup used for ontology-based metamodel
integration, are given throughout the next subsections.

(1) Metamodel lifting. The creation of an ontology from some kind of metadata like
an XML schema [8] or a DB schema [30] is generally referred to as lifting.
Metamodel lifting in particular encompasses a mapping of elements in the metamodel
to concepts in the ontology, thereby performing a step of abstraction and semantical
enrichment such that the ontology explicitly expresses the semantics of the modeling
concepts whose syntax is defined by the metamodel. Automatic as well as semi-
automatic approaches to lifting have already been presented in literature (cf. Section
5). For a more elaborated description of ModelCVS’ metamodel lifting functionalities
we kindly refer the reader to a technical report [16]. In our case, a generic solution for
lifting arbitrary MOF models (tool metamodels) to so-called tool ontologies can
partly automate the lifting process. However, the entailment of specific semantics for
newly lifted ontologies, naturally requires user intervention. Referring to our
example, this would mean to lift both the BPEL and the UML-AD metamodel
resulting in the respective tool ontologies.

(2) Ontology-level integration. The use of ontologies is based on the assumption that
integration on the ontology layer is more easy to understand and can be automated to
a greater extent. Lifting different metamodels’ elements to concepts of some common
ontology provides the first step of integration by establishing a common terminology.
Thereby, it is necessary that the chosen generic ontology covers the domains of both
tool ontologies appropriately. Furthermore, based on defined relations between
concepts in the ontology, relations between the concepts of specific tools can be
deduced, e.g., equivalence, subsumption, or substitutability. Continuing our example,
we assume a generic Workflow ontology as the common upper ontology. As an
example, we can imagine to map all of BPEL’s control flow constructs onto the
semantically appropriate classes in the Workflow ontology. Analogously we proceed
with mapping the UML-AD metamodel onto the Workflow ontology. From the two
mappings between tool and Workflow ontologies we employ structural reasoning to

deduce relationships between ontology classes representing the control flow
constructs of BPEL and ontology classes representing the UML-AD metamodel
elements.

(3) Derivation of bridging. Once a mapping between tool ontologies exists, the next
logical step is to derive bridging operators to express the desired integration behavior
on the metamodel level. In a derived bridge between metamodels, depending on the
integration pattern in use, semantic correspondence can be expressed by certain
metamodel bridging operators accordingly. In case of a translation, a bridging
operator might denote the creation of a new target model element for every
encountered source model element, whereas in the modularization case, a bridging
operator could denote that two model elements should be merged into one at check-
out. Getting back to our example, the translation pattern will be the most appropriate,
as both the ActivityDiagram and the BPEL metamodels cover a largely similar
domain. Hence, a relationship on the ontology level between ‘equivalent’ classes
would be derived into a bridging operator relating the metamodel elements that
initially got lifted to the respective ontology classes.

Tool
Ontology

co
nf

or
m

s

de
riv

e

de
riv

e

Meta-
model

Generic
Ontology

mapping mapping

de
riv

e

de
riv

e

lif
tin

g

lif
tin

g

lif
tin

g
co

nf
or

m
s

co
nf

or
m

s

derive

Class

Class Class Class

Class

Class Class

<XML-Schema>
<tag1>
<tag2>
</tag2>

</tag1>
<tag2>
</tag2>
...

</XML>

bridgingbridging

de
riv

ebind bind

4

1

2

3

Model
Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

<XML>
<tag1>
<tag2>
</tag2>

</tag1>
<tag2>
</tag2>
...

</XML>

<XML>
<tag1>
<tag2>
</tag2>
</tag1>
<tag2>
</tag2>
...

</XML>

<XML>
<tag1>
<tag2>
</tag2>

</tag1>
<tag2>
</tag2>
...

</XML>

trans-
forming

trans-
forming

Generic
Ontologies

UML ...

Tool Ontologies

Tool Integration Knowledge Base

Knowledge Reuse

StructureComponent

Process

Temporal

BPEL

Graph

Gen

Workflow

...

Timing

Tool
Ontology

co
nf

or
m

s

de
riv

e

de
riv

e

Meta-
model

Generic
Ontology

mapping mapping

de
riv

e

de
riv

e

lif
tin

g

lif
tin

g

lif
tin

g
co

nf
or

m
s

co
nf

or
m

s

derive

Class

Class Class Class

Class

Class Class

<XML-Schema>
<tag1>
<tag2>
</tag2>

</tag1>
<tag2>
</tag2>
...

</XML>

bridgingbridging

de
riv

ebind bind

44

11

22

33

Model
Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

<XML>
<tag1>
<tag2>
</tag2>

</tag1>
<tag2>
</tag2>
...

</XML>

<XML>
<tag1>
<tag2>
</tag2>

</tag1>
<tag2>
</tag2>
...

</XML>

<XML>
<tag1>
<tag2>
</tag2>
</tag1>
<tag2>
</tag2>
...

</XML>

<XML>
<tag1>
<tag2>
</tag2>
</tag1>
<tag2>
</tag2>
...

</XML>

<XML>
<tag1>
<tag2>
</tag2>

</tag1>
<tag2>
</tag2>
...

</XML>

trans-
forming

trans-
forming

Generic
Ontologies

UML UML ...

Tool Ontologies

Tool Integration Knowledge Base

Knowledge Reuse

StructureComponent

Process

Temporal

BPEL BPEL

Graph

Gen Gen

Workflow

...

Timing

...

Timing

Fig. 4. Ontology-based Metamodel Integration

(4) Derivation of transformation. After bridging operators between metamodels are
established, a code generation step results in QVT eventually representing executable
transformations. In the context of a translation from BPEL to UML at execution time,
this would basically result in code querying the source model and populating the
target model with new elements appropriately.

2.3 Knowledge Base for Tool Integration

As described in the previous paragraphs, ModelCVS’ semantic infrastructure makes
use of ontologies for means of the integration of metamodels by relying on tool
ontologies. Just like metamodels, these tool ontologies represent valuable assets in
terms of conceptualizing a domain. Hence, similar to a class library of a programming
language, it is intended to foster reuse capabilities of ontological knowledge
concerning the field of tool integration by building up a so-called tool integration
knowledge base. This knowledge base is made up of tool ontologies (i.e. products of

liftings) capturing knowledge about modeling languages, and thus foster immediate
reuse capabilities. Concerning the running example, tool ontologies for Gen, UML,
and BPEL would fall into this category. As one can see, in the same way as tool
metamodels may either represent conceptual modeling languages (e.g., UML) or
domain-specific languages (e.g., BPEL), tool ontologies will also vary in their
domain specificity accordingly. Therefore, similar as more specific classes in a class
hierarchy of a programming language reuse concepts of more general classes, a
hierarchical structure of ontologies is to be imposed that enables reuse of semantic
concepts for tool ontologies. For instance, a user entailing specific semantics during
the lifting process - usually by manually editing the resulting ontology - can reuse
concepts in the tool integration knowledge base by establishing subsumption
relationships to concepts in the respective tool ontology. Thus, apart from specific
tool ontologies, the resulting knowledge base will also comprise so-called generic
ontologies in a hierarchical order providing reusable semantics (cf. Figure 4). For
instance, the BPEL and the UML ActivityDiagram ontology can reuse concepts from
the generic ‘Workflow’ ontology, which in turn can play a role in integrating these
tool ontologies, as described in the BPEL to UML-AD example (cf. Section 2.2)
earlier. Furthermore, the ontologies within the proposed tool integration knowledge
base will be populated with specific instance data from reference examples of case
studies. These examples contained in the knowledge base enable the semi-automatic
mapping with newly created tool ontologies that are as well populated with instance
data from a suitable reference model. Thus, the process of specifying semantics for
tool ontologies can be enhanced considerably. The reference models have to be made
up such that they produce satisfying results with respect to enhance ModelCVS’
matching and reuse capabilities.

3 Architecture and Prototype Implementation

As can be seen in Figure 5, the proposed architecture for ModelCVS is organized into
three major components.

Rational Software
Modeler

Tool AdapterTool Adapter

XM
I

BPEL Process
Manager

Tool AdapterTool Adapter

XM
I

QVT Engine

Model Merger

Technological Framework
Model Transformer

Model and
Metamodel Base

Metamodel
Bridging
Editor

Metamodel
Bridging

Generator

Metamodel
Bridging Toolkit

Metamodel Lifting Jack

Ontology
Mapper

Ontology Toolkit

Repository

ModelCVS

AllFusion Gen

Tool AdapterTool Adapter

XM
I

Tool Integration
Knowledge Base

QVT
Generator

QVT
Generator

Ontology
Editor

Fig. 5. ModelCVS Architecture

First, a Technological Framework provides the actual tool integration services and
comprises among others, a repository supporting semantic versioning and transparent
model transformation. It is supported by Tool Adapters, i.e., external components that
mediate between proprietary tool interfaces and ModelCVS. Second, the Metamodel
Bridging Toolkit provides support for defining bridges as to realize integration
patterns, manually or automatically. Third, the Ontology Toolkit supports ontology-
based metamodel integration in terms of lifting, mapping, and editing capabilities. In
the following we will elaborate ModelCVS’ components in more detail and lay out
some of the design decisions taken during the realization of our prototype, whose
functionality is detailed in a simple example.

3.1 ModelCVS Architectural Components

Technological Framework. The Technological Framework performs the actual tool
integration, based on the configurations defined using the Metamodel Bridging
Toolkit and the Ontology Toolkit. Its main component is the Repository which
provides persistent storage and versioning of complex artefacts. The Repository is
divided into two parts. First, the Model and Metamodel Base is dedicated to artefacts
of the model and metamodel level, comprising, e.g., models, metamodels, and
bridging definitions. Second, the Tool Integration Knowledge Base contains the
ontology level artefacts such as tool and generic ontologies, as well as associated
mappings and liftings. Concerning the repository for the model and metamodel base,
our prototype relies on the Eclipse Modeling Framework (www.eclipse.org./emf) and
Subversion (subversion.tigris.org) for persistence and versioning capabilities, along
an ontology repository for hosting the tool integration knowledge base. The ontology
repository is the only component among those depicted in Figure 5 for which no
prototypical solution exists, as for the moment an evaluation of viable solutions is still
ongoing we simply store ontologies in the filesystem. The Model Transformer plugs
into the repository and provides model transformation capabilities as required for the
various tasks defined by the integration patterns. The prototype currently realizes
model transformations with ATL [13] as a QVT Engine [22]. The metamodel bridges
that are specified in a high-level language (cf. Section 2.1) using the Metamodel
Bridging Toolkit have to be translated into that transformation language. A QVT
Generator, prototypically realized through a template based approach, will perform
this compilation task. The Model Merger also plugs into the Repository to provide
merge conflict detection for models, based on the versioning capabilities provided by
the repository back-end. Tool adaptors are a practical necessity, since it cannot be
assumed that all tools to be integrated in a tool chain support the data format of
ModelCVS. XMI is a natural candidate for exchanging models, as it is based on
MOF, and supported by many tools, particularly UML tools.

Metamodel Bridging Toolkit. This component provides all functionalities dealing
with the handling of metamodels and especially the creation of metamodel bridges
according to the various integration patterns. A Bridging Editor for the bridging
language can for instance be implemented by reusing a generic mapping tool like the
Atlas Model Weaver [4] that can be customized to accommodate the specific

concepts of the bridging language, as was done in our prototype implementation. The
Bridging Generator makes use of any mappings created at the ontology level to
automatically derive bridges between metamodels. These automatically generated
bridges usually have to be reviewed and refined by the user, using the Metamodel
Bridging Editor.

Ontology Toolkit. Finally, the Ontology Toolkit provides the means for metamodel
lifting as well as mapping and editing of ontologies. Its key component is the
Metamodel Lifting Jack, which provides means for the creation of an ontology from a
metamodel through lifting. Our prototypical lifting solution is able to map EMF’s
Ecore metamodels onto OWL ontologies, enabling the further process of semantic
enrichment. To actually manipulate and make use of the resulting ontologies further,
tools like Protégé (protege.stanford.edu), the JENA API (jena.sourceforge.net) as
well as several specialized inference engines like F-OWL (fowl.sourceforge.net) can
be used, contributing to the Ontology Mapper and the Ontology Editor. Our prototype
is currently built on IBM’s Integrated Ontology Development Toolkit (IODT)1.

3.2 ModelCVS Integration Example

To exemplify the above described functionalities and demonstrate the feasibility of
our prototype, Figure 6 shows two ontologies that have been lifted from a simple
UML ActivityDiagram and a BPEL Process metamodel.

Flow

StructuralElement
Container

Containee

Connector

Connectee

Process

Activity

ReplyReceive Invoke

Link

TransitionStateVertex
+name: String

ActionState PseudoStateFinalState

contains connect

activity
subVertex transition

activity

source

target

source

target

incoming

outgoing

links

ActivityGraph

FlowFlow

StructuralElementStructuralElement
ContainerContainer

ContaineeContainee

ConnectorConnector

ConnecteeConnectee

ProcessProcess

ActivityActivity

ReplyReceiveReceive InvokeInvoke

LinkLink

TransitionTransitionStateVertex
+name: String

ActionStateActionState PseudoStatePseudoStateFinalStateFinalState

contains connect

activity
subVertex transition

activity

source

target

source

target

incoming

outgoing

links

ActivityGraphActivityGraph

Fig. 6. Structural Reasoning for Mapping Tool Ontologies

For reasons of simplicity we use a ‘minimized’ BPEL metamodel, in which we
assume that all activities reside in one Flow activity with Links excplicitly defined
between the contained Activities. Thus, our simple BPEL metamodel is made
unambiguous, as “human-friendly” control structures are omitted without loosing
semantics. Similarly, a simplified subset of the UML 1.4 metamodel is employed, as
it is used in the UML profile for Automated Business Processes2. After the automated

1
 http://www.alphaworks.ibm.com/tech/semanticstk

2
 http://www-128.ibm.com/developerworks/webservices/library/ws-uml2bpel/

lifting step, subsumption relationships are being established to a generic upper
ontology conceptualizing structural notions such as ‘connection’ and ‘containment’.
Note that only a few semantic enrichments relevant for the example are shown in
Figure 6. Based upon the mapping towards the common upper ontology, which for
instance assumes that an ActivityGraph is a Container as it is made up of Transitions
and StateVertices, or that a Reply, Receive and Invoke are Containees due to the
atomicitiy of primitive BPEL activities, structural reasoning can yield ‘semantically
equivalent’ (or at least conceptually related) classes and properties. For instance,
since Process and Flow subsume Container and Activity subsumes Containee (which
means Flow is a Containee as well by inheritance), one can reason that the properties
activity and contains linking the respective classes are equivalent, too. Analogously
we proceed with the Activity Diagram ontology. Finally, we can, e.g., deduce that
subVertex and activity are ‘equivalent’ properties. As another example, one sees that
both Activity and StateVertex are Connectees, and Link and Transition are
Connectors. Hence, one can see target and source are ‘equivalent’ to incoming and
outgoing respectively. In this case structural reasoning on the ontology level was able
to resolve semantic heterogeneity that a name matching heuristic would have not
found, namely that the source and target properties contained in both ontologies do
not(!) carry the same semantics. Momentarily, the ModelCVS prototype is able to
carry out TBox reasoning on ontologies as described above to find equivalent classes
and properties.

In a next step, depending on a certain integration pattern, ontological mapping
information is used to derive bridgings between metamodels. Figure 7 shows a
screenshot of our prototypical bridging editor, with a specific bridging model being
edited, that consist of three different kinds of operators ‘translating’ the BPEL and the
UML Activity Diagram metamodel: ExclusiveEquivalence, SharedEquivalence, and
GeneralizedEquivalence. These operators should not be considered complete, but
nevertheless allow to illustrate the use of bridging operators derived from ontology
mappings for the purpose of this example.

Fig. 7. Screenshot of Bridging Editor

In case an ontology mapping yields a one-to-one relation between classes, as it is the
case with Link and Transition, or with Process and ActivityGraph, one can deduct

that each class will have one counterpart, and no semantics is being lost when
translating. However, in case of Reply, Receive, and Invoke mapping to ActionState,
we identify a SharedEquivalence. This means, that multiple classes are being mapped
on a single class, only, which would result in loss of semantics. Thus, additional
information is introduced to the target model element, for instance in the form of an
identifying attribute value or by a stereotyped class. A GeneralizedEquivalence
indicates that their subclasses are involved in other, more specialized bridgings.

The described example shows that a mapping between ontologies yields a conceptual
mapping, which has to be further refined by bridging operators on the metamodel
level, allowing to make design decisions (SharedEquivalence using stereotypes,
attribute, etc.) about the implementation of the translation. Utilizing a bridging model,
our prototype then makes use of a template mechanism to create ATL code that
finally implements the mapping. Although code generation is not complete, as for
instance certain queries or helper functions require manual refinement, overall, a
substantial amount of work can be avoided compared to traditional transformation
development.

4 Related Work

This section gives an overview of related work that we deem relevant to ours. These
fields encompass work on tool integration, which is helpful to put our goals in
context with past efforts, model transformation languages building our system’s
backbone, and work on integrating heterogeneous data in terms of models and
ontologies.

Tool Integration. Brown [5] categorized tool integration into a conceptual (“what is
integration?”) and a mechanical level (“how to provide integration?”). Regarding the
conceptual level, Wasserman [31] first suggested a categorization to describe the
integration of tools from a functional point of view comprising integration in terms of
platforms, GUIs, data, control, and processes. Research efforts at the mechanical
level of tool integration include (1) a series of standardization and middleware efforts
like, CDIF [9] and OMG’s recent RFP OTIF3

 (open tool integration framework) and
(2) infrastructures like the ToolBus architecture [3]. Some of these efforts were often
grounded in large initiatives but have not been widely accepted, such as CDIF, which
in the meanwhile has been replaced by MOF and XMI, for example. Despite of all
these important efforts, tool integration is still a challenge, leading most often to
strongly technology-dependent, hand-crafted solutions that suffer from high
maintenance overheads and most importantly, poor scalability.

Model transformation languages. Existing approaches in this area having been
either submitted to OMG’s QVT request for proposals or being already part of
existing MDA tools ranging from algorithmic and imperative approaches, via graph-

3
 http://www.omg.org/docs/mic/04-08-01.pdf

transformation-based approaches to template rule-driven, and hybrid approaches
[7]. Tratt et al. [29], e.g., provide an extensible, imperative model transformation
language with some rule-based elements for pattern matching purposes. With ATL
[13] Bezivin et al. have developed a hybrid (declarative/imperative) transformation
language in response to QVT built upon EMF, making it especially applicable in
context of Eclipse development. Such is the Eclipse based MTF4 by IBM, which with
a purely declarative transformation definition style might be harder to practically
apply than ATL, for instance. BOTL5 allows the definition of modular, rule-based
transformations, with independent rules for sets of metamodel elements. Based on
these several kinds of QVT-like transformation language proposals, infrastructures
and frameworks have been built for tool integration [25]. For example, WOTIF (Web-
based open tool integration framework)6 uses a graph-transformation mechanism and
realizes different tool integration patterns, but requires that every client tool supports
certain APIs for installing plugins, which is in contrast to our approach. Finally,
although MDDi (Model-driven Development Integration Project of Eclipse)7 is still in
its drafting phase, it provides some interesting ideas for model integration in terms of
a bus architecture similar to AMMA8. Although QVT-like model transformation
languages are a cornerstone also of our vision, existing proposals are too generic and
lack appropriate abstraction mechanisms for different kinds of model integration
patterns, which are highly needed in practice and well-known from other research
areas such as federated and multi database systems [27] and web service composition
[18]. Such integration patterns (cf. Section 3) would require a series of basic model
transformations which will not scale up when manually specified for complex
models.

Integration patterns and bridging operators. There are only few related
approaches (cf. e.g., [23]) providing abstraction mechanisms in terms of, e.g., high-
level bridging operators or modularization techniques in the areas of model
management and model integration. For instance Rondo [20] provides high-level
operations facilitating the integration of relational and XML schemata. Another
interesting approach from the database community is MDM and its successor
ModelGen [2], which to the best of our knowledge caters for the translation
integration pattern, only. However, we believe that another M3 level other than MOF
and the ‘supermodel’ approach may work well for integrating database models, we
also believe that for general modeling languages their approach may not scale
adequately. Nevertheless, the ideas behind the ‘axiomatic’ approach in which model
transformations are derived from set of predefined rules may prove valuable to us
with respect to the QVT generation.

In the modeling realm, Clarke [6] and Straw et al. [28] introduce Model Composition
Semantics and Model Composition Directives respectively, which represent

4
 http://www.alphaworks.ibm.com/tech/mtf

5
 http://www4.in.tum.de/~marschal/botl/

6
 http://escher.isis.vanderbilt.edu/tools/get_tool?WOTIF

7
 http://www.eclipse.org/proposals/eclipse-mddi/

8
 http://www.sciences.univ-nantes.fr/lina/atl/AMMAROOT/

composition mechanisms for UML class diagrams. Both approaches are fit to UML
models only, and do not immediately provide an appropriate abstraction as would be
required for the integration patterns identified above (c.f. Section 2). Furthermore,
ideas from the area of aspect-orientated modeling dealing with modularization of
cross-cutting-concerns and the weaving of aspects are relevant to the definition of
bridging operators for our integration patterns. In this respect, C-SAW by Gray et al.
[10] which is a so called cross-cutting-concern weaver, is of interest. However, it
lacks support for abstract integration mechanisms and is based on a meta-metamodel
different from MOF, making the approach not immediately applicable for us.

Ontology-based Integration. Although concepts from related work in the area of
lifting metadata to ontologies are of relevance to our approach, tools like the
OntoLIFT prototype [30] for database schemata or the automatic mechanism
introduced by Ferdinand et al. to lift XML schemata, are not immediately reusable in
our metamodel-centric context. As ModelCVS performs tool metamodel integration
on basis of semantics covered by tool ontologies, integrating these individual tool
ontologies is an issue. The central burden making ontology integration a rather
comprehensive challenge are heterogeneity issues that have to be coped with [17],
which are similar to heterogeneities in database research [27]. Thus, our approach has
to deal with different forms of heterogeneity, establish a certain ontology integration
architecture, and provide appropriate mechanisms for mapping discovery,
representation and, reasoning [21]. Although having different goals in mind since we
use ontologies as a basic vehicle for the integration of tool metamodels, we can
benefit from a large body of literature which can provide useful input for our
approach. For a comprehensive overview of this active research area compare, e.g.,
[1], [14], and [21].

5 Concluding Remarks

Currently, an early prototype of the proposed system exists, that already allows to
carry out a comprehensive range of intended functionality. Besides further developing
the existing implementation, our focus lies on extending bridging languages and
concepts for the implementation of ontology-based integration. We are aware that a
successful realization of a system like ModelCVS as laid out in this paper faces a
number of issues mainly concerning technological feasibility and practical
applicability of the final result:

Incompatible standards. At the time of writing it is a fact that the interchange of
models via XMI still poses a practical problem, which stems from incompatible XMI
output produced by different modeling tools. Nevertheless has XMI become a widely
adopted standard by most modeling tools and it can be expected that tool vendors will
eventually converge on producing interchangeable XMI serializations. Furthermore,
although MOF is a widely accepted standard, several interpretations – and resulting
from that – different implementations in terms of model repositories exist. For
seamless interchange of tool metamodels with ModelCVS, strict adherence to a

common standard like MOF is necessary. In general, however, the problems with
incompatible XMI files and differing meta-metamodel standards are issues which can
be solved with the construction of specific tool adapters.

Quality of integration. Considering the fact that we use an ontology rather than a
mapping to some semantic domain [11] to denote the semantics of a modeling
language, this is reasonable since ontologies have been developed as a means for
integration, whereas semantic domains are more appropriate for reasoning about
intrinsic properties of a model. Furthermore, it is often difficult or even impossible to
define a mapping from a modeling language to a semantic domain, as is the case with
UML [11]. The consequences of not using a semantic domain are that a mapping
between ontologies and therefore a derived bridging between metamodels may not be
precise enough as to ensure exact equivalence of models – a property that would be
important if executable code should be generated from models. Ontologies can,
however, be used to explicitly keep track of the quality of a mapping, i.e., whether a
mapping is precise or not, and which caveats have to be considered. Therefore, the
knowledge base and bridging operators should support this kind of quality control.

Integration overhead. Considering the manual effort involved in metamodel lifting,
the question arises whether that effort pays off by the improved support in defining
metamodel bridges and in semantic versioning. We assume that moving to the more
abstract semantic level becomes beneficial especially if a metamodel is complex, as is
the case, e.g., in our case study with more than 800 classes of Gen. The ontology will
express semantics of concepts and consequently integration mappings more
concisely, thus helping to keep mappings comprehensible and manageable. Another
net benefit resulting from lifting metamodels is to build up a comprehensive tool
integration knowledge base containing readily reusable semantic definitions.

Acknowledgement. The ModelCVS research project is funded by the Austrian Ministry of
Transport, Innovation, and Technology under the “FIT-IT Semantic Systems” program line.

References

[1] V. Alexiev et al. (eds.): Information Integration with Ontologies – Experiences from an
Industrial Showcase, Wiley, 2005.

[2] P. Atzeni, P. Cappellari, P. Bernstein: A multilevel dictionary for model management,
Int. Conf. on Conceptual Modeling (ER), Klagenfurt, Nov. 2005.

[3] J. A. Bergstra, P. Klint: The Discrete Time ToolBus - a software coordination
architecture. Coordination Languages and Models, Springer LNCS 1061, 1996.

[4] J. Bézivin et al.: First Experiments with a ModelWeaver, OOPSLA & GPCE Workshop,
2004.

[5] W. Brown, P. H. Feiler, K. C. Wallnau: Past and future models of CASE integration, 5th
Int. Workshop on Computer-Aided Software Engineering, IEEE, July 1992.

[6] S. Clarke: Extending standard UML with model composition semantics, Science of
Computer Programming, Elsevier Science, 44(1), July 2002.

[7] K. Czarnecki, S. Helsen: Classification of Model Transformation Approaches, OOPSLA
Workshop on Generative Techniques in the Context of MDA, Oct. 2003.

[8] M. Ferdinand et al.: Lifting XML Schema to OWL, 4th Int. Conf. on Web Engineering
(ICWE), Munich, July 2004.

[9] R. G. Flatscher: Metamodeling in EIA/CDIF - meta-metamodel and metamodels, ACM
Transactions on Modeling and Computer Simulation (TOMACS), 12(4), Oct. 2002.

[10] J. Gray et al.: An Approach for Supporting Aspect-Oriented Domain Modeling, Int.
Conf. on Generative Programming and Component Engineering, Springer LNCS 2830,
2003.

[11] M. Haller, B. Pröll, W. Retschitzegger, A M. Tjoa, R. Wagner, “Integrating
Heterogeneous Tourism Information in TIScover - The MIRO-Web Approach”, Conf. on
Information and Communication Technologies in Tourism (ENTER), Barcelona, 2000.

[12] M. Hitz, G. Kappel, E. Kapsammer, W. Retschitzegger: UML@Work (3.ed., in German),
dpunkt, July 2005.

[13] F. Jouault, I. Kurtev: Transforming Models with ATL, Model Transformations in
Practice Workshop at MoDELS 2005, Montego Bay, Jamaica, 2005.

[14] Y. Kalfoglou, M. Schorlemmer: Ontology Mapping - The State of the Art, Dagstuhl
Seminar on Semantic Interoperability and Integration, 2005.

[15] G. Kappel, E. Kapsammer, W. Retschitzegger: Integrating XML and Relational Database
Systems, WWW Journal, 7(4), Kluwer Academic Publishers, Dec. 2004.

[16] G. Kappel, G. Kramler, E. Kapsammer, T. Reiter, W. Retschitzegger, W. Schwinger:
ModelCVS - A Semantic Infrastructure for Model-based Tool Integration, Technical
Report, ftp://ftp.ifs.uni-linz.ac.at/pub/publications/2005/0705.pdf, 2005.

[17] M. Klein: Combining and relating ontologies: an analysis of problems and solutions,
Workshop on Ontologies and Information Sharing (IJCAI), Seattle, 2001.

[18] J. Koehler, B. Srivastava: Web service composition: Current solutions and open
problems, ICAPS Workshop on Planning for Web Services, Italy, June 2003.

[19] G. Kramler, E. Kapsammer, G. Kappel, W. Retschitzegger: Towards Using UML 2 for
Modeling Web Service Collaboration Protocols, Int. Conf. on Interoperability of
Enterprise Software and Applications, Geneva, Feb. 2005.

[20] S. Melnik, E. Rahm, P. A. Bernstein: Rondo - a programming platform for generic model
management, ACM SIGMOD Int. Conf. on Management of Data, New York, June 2003.

[21] N. Noy: Semantic Integration - A Survey Of Ontology-Based Approaches, SIGMOD
Record, 33(4), Dec. 2004.

[22] QVT-Merge Group: Revised Submission for MOF 2.0; OMG Query / Views /
Transformations RFP(ad/2002-04-10), Version 2.0, ad/2005-03-02, March 2005.

[23] E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching, VLDB
Journal, 10(4), 2001.

[24] T. Reiter, E. Kapsammer, W. Retschitzegger, W. Schwinger: Model Integration Through
Mega Operations, Proc. of the Int. Ws. on Model-Driven Web Engineering (MDWE),
Sydney, Australia, July 2005.

[25] A. Schürr, H. Dörr: Introduction to the special SoSym section on model-based tool
integration, Journal on Software and Systems Modeling, Springer, 4(2), May 2005.

[26] M. Schrefl, M. Bernauer, E. Kapsammer, B. Pröll, W. Retschitzegger, Th. Thalhammer:
Self-Maintaining Web Pages, Information Systems, 28(8), Elsevier, 2003.

[27] A. Shet, J. A. Larson: Federated Database Systems for Managing Distributed,
Heterogeneous and Autonomous Databases, ACM Computing Surveys, 22(3), Sep. 1990.

[28] G. Straw et al.: Model Composition Directives, 7th UML Conference, Lisbon, 2004.
[29] L. Tratt: Model transformations and tool integration, Journal on Software & Systems

Modeling (SoSym), Springer, 4(2), 2005.
[30] R. Volz et al.: OntoLIFT Prototype, IST Project 2001-33052 WonderWeb, 2003.
[31] A.I. Wasserman: Tool integration in software engineering environments, Int. Workshop

on Software Engineering Environments, Springer, New York, 1989.

