
Int. J. of Web Engineering Technology, Vol. 1, No. 1, 2003 79

Copyright © 2003 Inderscience Enterprises Ltd.

Customisation for ubiquitous web applications
a comparison of approaches

Gerti a el
Business Informatics Group (BIG), Vienna University of Technology,
Vienna, Austria
E-mail: gerti@big.tuwien.ac.at

Birgit Pr ll
Institute for Applied Knowledge Processing (FAW), Johannes Kepler
University Linz, Linz, Austria
E-mail: bproell@faw.uni-linz.ac.at

Werner etschit egger
Department of Information Systems (IFS), Johannes Kepler University
Linz, Linz, Austria
E-mail: werner@ifs.uni-linz.ac.at

Wieland Sch inger
Software Competence Center Hagenberg (SCCH), Hagenberg, Austria
E-mail: wieland.schwinger@scch.at
Abstract: Ubiquitous web applications adhering to the anytime/anywhere/
anymedia paradigm are required to be customisable meaning the adaptation of
their services towards a certain context. Several approaches for customising
ubiquitous web applications have been already proposed, each of them having
different origins and pursuing different goals for dealing with the unique
characteristics of ubiquity. This paper compares some of these proposals, trying
to identify their strengths and shortcomings. As a prerequisite, an evaluation
framework is suggested which categorises the major characteristics of
customisation into different dimensions. On the basis of this framework,
customisation approaches are surveyed and compared to each other, pointing
the way to next-generation customisation approaches.

Keywords: ubiquity; web applications; customisation; context; adaptation;
personalisation.

Reference to this paper should be made as follows: Kappel, G. Pr ll, B.
Retschitzegger, W. and Schwinger, W. (2003) ‘Customisation for ubiquitous
web applications – a comparison of approaches’, International Journal of Web
Engineering Technology, Vol. 1, No. 1, pp. 79–111.

Biographical notes: Gerti Kappel is a full Professor of business informatics
at the Vienna University of Technology since 2001. Prior to that she was a full
Professor of computer science at the Johannes Kepler University Linz.
She received the MS and PhD degrees in computer science from the University
of Vienna and the Vienna University of Technology in 1984 and 1987,
respectively. From 1987 to 1989 she was a visiting researcher at Centre

80 G. Kappel et al.
Universitaire d’Informatique, Geneva, Switzerland. Her current research interests
include object-oriented modelling, database/web integration, ubiquitous web
technologies, web engineering, and applications to workflow management and
electronic commerce. She has been involved in national and international joint
projects between university and industry, as well as sponsored by the Federal
Ministry for Education, Science and Culture, and the EU. Kappel is a member
of ACM, IEEE, GI, and OCG.

Birgit Pr ll studied Computer Science at the Johannes Kepler University Linz,
Austria. Since 1991 she is employed at the FAW (Institute for applied
Knowledge Processing, Head: Prof. Dr. Roland Wagner) at the Johannes
Kepler University Linz. She has been engaged in industrial and research
projects in the areas of expert systems and CAD, configuration management,
relational/object-oriented databases, and information systems and electronic
commerce on the World Wide Web. From 1995 to 2000 she managed the
development of the web-based tourism information systems TIS@WEB and
TIScover at the FAW. Her current research interests and fields of teaching
comprise information retrieval, web engineering and electronic commerce.

Werner Retschitzegger studied business informatics at the Johannes Kepler
University (JKU) Linz, Austria. He received the MS (1991) and PhD (1996)
degrees from the Faculty of Business, Economics and Social Sciences and his
Habilitation (Venia Docendi) for applied computer science from the Faculty of
Natural Sciences and Engineering of JKU. From 1990 to 1993 he has been
working for the Institute for Applied Knowledge Processing in Hagenberg,
Austria, being involved in various national and international industrial and
research projects. Since 1993, he is affiliated with the Department of
Information Systems at JKU. In 2002, he got a temporary full professorship for
business informatics at the Vienna University of Technology. He has published
more than 60 papers in international refereed journals and conference
proceedings. His current research interests comprise object-oriented modelling,
the integration of database and web technology and its application to electronic
commerce, ubiquitous web applications and web engineering.

Wieland Schwinger is working as a Senior Researcher and Project Manager of
strategic research projects at the Software Competence Centre Hagenberg. Prior
to that he worked as Teaching and Research Assistant at the department of
Information Systems and at the Centre for Computing and Information
Technology of the Johannes Kepler University (JKU) Linz, Austria focusing on
web applications. He studied computer science at the University of Sk vde,
Sweden and business informatics at JKU, receiving master degrees from both
universities in 1997 and 1998 respectively. For his PhD he specialized in
modelling ubiquitous web applications graduating in 2001 from the JKU. His
current research interests comprise ubiquitous web applications, conceptual
modelling, and mobile computing. He is involved in national and international
projects on the development of methods and tools for ubiquitous web
applications amongst them in the EU-project “Ubiquitous Web Applications
(UWA)” (IST-2000-25131). He is author of more than 20 publications about
web application modelling, customisation, and web engineering. He serves as a
reviewer for several international journals and conferences and was organizing
member of ECOOP96 and co-chair of IIWAS2001, and IIWAS2002.

Customisation for ubiquitous web applications 81
1 Introduction

Over the next decade, millions of businesses, billions of people, and trillions of devices
will be connected [1]. The promise of this envisioned future is access at anytime, from
anywhere, with anymedia, to everyone and everything, thereby boosting productivity and
enabling more satisfying ways to get things done. This will radically change the way how
people will interact, how business is conducted, and how our every day live will be
organized. The internet and the World Wide Web in particular will be the technological
bases for that fundamental change.

Looking back in history, the World Wide Web can be characterized by three
generations of applications differing in both, the technology used and the services
provided [2–4]. At the beginning, the World Wide Web has been employed merely for
simple read-only applications, presenting information to anonymous users whose number
and type is not necessarily predictable. Such applications were realized by some web
server offering static web pages for browsing through, only. Soon after, the web was
more and more used as a platform for full-fledged, increasingly complex applications,
where a huge amount of change-intensive information were (partly) managed by
underlying database systems [5]. Web pages are generated out of the database either at
the user’s request or in advance as soon underlying data changes [6]. This led to the
second generation of web applications, providing the basis for promising application
areas like e-commerce [7].

Currently, we are facing the third generation of web applications being characterised
by the anytime/anywhere/anymedia paradigm as mentioned before, thus providing
ubiquitous access to services, turning e-commerce into m-commerce [8]. The traditional
‘one-size-fits-all’ approach in the development of web applications is not appropriate to
serve the fundamental objective of ubiquitous web applications to communicate the right
thing at the right time in the right way. The user should be enabled to interact efficiently
with the system despite restrictions in the physical environment, thus preserving semantic
equivalence of services and to take advantage from knowledge about the situation of use
which is necessary to achieve semantic enhancement of services.

Ubiquitous computing was first stressed by Marc Weiser [9], envisioning a scenario
where computational power would be available everywhere embedded in walls, chairs,
clothing and the like. Weiser’s goal was to achieve the most effective kind of technology,
which is available throughout the physical environment, while making them effectively
invisible to the user. In the area of web applications, ubiquity is not seen as visionary in
this highly pervasive sense, meaning that computing power is embedded everywhere.
Rather, ubiquitous web applications build more on existing technology, in that web
access is no longer primarily a domain of browsers based on desktop PCs but more and
more done by various commercially available mobile devices [10,11]. In particular,
ubiquity for the web offers new opportunities and challenges for web applications in
terms of time-aware [12], location-aware [13], device-aware [14] and network-aware
[15] services which can be personalized for a certain user or user group, too [16].

The pre-requisite for realising such services is awareness of their context [17,18]. One
must understand what context is to determine its relevancy and how it can be exploited
for adaptation purposes [19]. Knowledge about the device used, e.g., its display
resolution, would allow to render the graphical representation of a service accordingly,
information about location and time of access together with user preferences would allow
to provide more accurate services taking into account the current situation of use. In the

82 G. Kappel et al.
following we use the term customisation to denote the adaptation of an application’s
services towards its context.

By considering all the different facets of context as mentioned above, customisation is
seen more comprehensive than traditional personalisation, covering user and usage data
only [20,21]. Furthermore, it has to be emphasised that customisation deals with context
which can be predicted at design time and may occur at a certain point at run time.
Personalisation for example means adapting to different persons, such that they perceive
the application differently at the same time. In contrast to that, it is not the primary focus
of customisation to accommodate for unanticipated changes over time, caused by, e.g.,
changing organisational or technological requirements [22,23]. These changes are rather
covered by means of system maintenance and re-engineering techniques which are not
the focus of this paper [24].

Several approaches for customising web applications have been already proposed,
each of them having different origins and pursuing different goals for dealing with the
unique characteristics of ubiquitous web applications. This paper compares some
representatives of these proposals stemming from different research directions and aims
to identify their strengths and shortcomings. According to that overall goal, the remainder
of the paper is organised as follows. First of all, Section 2 looks back in history,
identifying the roots of customisation within different research directions. Next, Section 3
presents the criteria which are part of the evaluation framework and categorises them
along different dimensions. Section 4 gives an overview of 10 customisation approaches
and points out their distinguishing characteristics in light of the evaluation framework.
Section 5 puts the descriptions of the approaches into perspective by summarising the
results and reporting on lessons learned. Section 6 concludes the paper with an outlook to
future work.

2 The origins of customisation

Considering the notion of customisation from a historical point of view, one can identify
at least two areas of major influence namely personalisation and mobile computing
(cf. Figure 1).

Figure 1 Origins of customisation

Customisation for ubiquitous web applications 83
The notion of personalisation represents a major challenge since the end user has been
put in the middle of concern when developing interactive applications which dates back
to the early 1980s. According to [16], personalisation provides users with an experience
most suitable for their background knowledge and objectives. As can be seen in Figure 1,
personalisation has been investigated in various different areas of application
development. An area dealing with personalisation issues already for a long time is the
user interface community, which brought up the notion of adaptive user interfaces, cf.,
e.g., [25]. Adaptive user interfaces aim at tailoring a system’s interactive behaviour to
skills, tasks and preferences of human users. The broader approach of intelligent or
advisory help and tutoring systems includes adaptive characteristics as a major source of
its intelligent behaviour, cf., e.g., [26,27]. These systems adapt their explanations and
teaching strategies to the individual needs of users in terms of their knowledge level and
learning progress. Another area dealing with personalisation issues but emphasising more
on adapting the content of an application are information filtering and recommender
systems like found in [28,29]. The goal of these systems is to go through large volumes of
dynamically generated textual information and present to the user those which are likely
to satisfy his/her information requirements. The emerge of hypertext and hypermedia [30]
led to another research direction called adaptive hypermedia [31]. Whereas the ‘pre-web’
generation of adaptive hypermedia systems explored personalised presentation and
navigation support (e.g., the need for alternative access paths to information) for a closed
group of users [32], nowadays, one faces the formidable task of developing web
applications for an unpredictable number of anonymous users while making them work
as if they were designed for each individual user.

The area of mobile computing can be seen as second major root of customisation.
In contrast to personalisation having already a long tradition in application development,
the research on mobile computing begun in the early 1990s. At this time, the focus was
primarily on mobility issues in terms of location-based services [33–35]. One of the first
projects in this realm reported in literature was the ‘Active Badge’ project at Olivetti,
where information about a user’s physical location was sensed at any particular moment
to modify the behaviour of programs running on a stationary server [36]. Today, location
information which can be made available by mobile network providers or using
technologies such as the Global Positioning System (GPS) is used for realising various
indoor or outdoor location-based services such as geographically targeted advertising,
fleet management, traffic control or emergency services.

Another important research direction in the area of mobile computing is dedicated to
multi-channel delivery, meaning that services provided by web applications are made
available on various mobile devices [37]. This requires to consider the varying
capabilities of devices in terms of hardware (e.g., display size and resolution, method of
input, memory, disk capacity and computational power) and software (e.g., operating
system and web browser) in order to allow a proper adaptation of the application’s user
interface and interaction behaviour. There are already standardisation efforts in this
direction, most notably the device independent activity of the W3C [38–40]. Since
mobile devices also imply a wireless connection carrying certain network constraints,
network adaptation is another influencing research direction for customisation [15].
In this respect, communication autonomy requires that the application properly adapts to
sudden disconnections which can be caused either voluntary (e.g., the users wants to
avoid disturbance, to reduce cost or power consumption) or happen against the will of the
user because the battery becomes empty or network connection is lost. Restrictions and

84 G. Kappel et al.
variations in bandwidth require to change either the content of the transmitted data
(e.g., by lossy or lossless compression mechanisms) or the methods used to send that data
(e.g., by altering the underlying protocol) [15].

As can be seen from this historical overview, customisation issues have a long
tradition in computer science and have been dealt with in a large number of different
areas. Existing literature on the state of the art concentrate either on personalisation in
certain application domains such as hypermedia systems (cf. [31,16]) or emphasise more
on customisation in mobile computing (cf., e.g., [15,41]). In addition, some of these
surveys are done without using a proper underlying evaluation framework. This paper, in
contrast, tries to cover the whole spectrum of customisation as required by ubiquitous
web applications learning from the different research directions discussed above.
It proposes a uniform evaluation framework which is suitable for comparing approaches
originating from both, personalisation and mobile computing.

3 Evaluation framework

In the following, we want to elaborate on what is necessary when realising ubiquitous
web applications by means of customisation, proposing a comprehensive and uniform
evaluation framework. The benefit of this evaluation framework is threefold. First, it
allows a structured, uniform view to better understand the various aspects of
customisation. Second, it can be used as a conceptual framework for evaluating existing
approaches on customisation (cf. Sections 4 and 5). Third, it may be employed for
developing next generation customisation approaches (cf. Section 6).

Basically, our evaluation framework comprises two orthogonal dimensions context
and adaptation and the mapping in between represented by the notion of customisation
(cf. Figure 2).

Figure 2 Evaluation framework

In the following, the evaluation framework is explained in more detail. The criteria
discussed are partly based on our previous work in this area as described, e.g., in [42,43].
It has to be emphasised that some of these criteria serve as requirements which should be
fulfilled by customisation approaches to be appropriate for developing ubiquitous web
applications, while others are simply a means to characterise existing approaches along a

Customisation for ubiquitous web applications 85
common structure. The reference in parentheses besides each criteria will be used as
pointer to the criteria in the survey in Section 4.

3.1 Context

The context dimension includes the circumstances of consumption relevant for a
ubiquitous web application, mainly dealing with the question ‘why to customise and
when’. In this respect, we define context as the reification of certain properties,
describing the environment of the application and some aspects of the application itself,
which are necessary to determine the need for customisation. Context can be further
specified by looking at the scope of the context which is considered for customisation, its
representation, its acquisition and access mechanisms used (for a similar categorisation,
cf., e.g., [21]).

3.1.1 Scope of context

The scope of context comprises not only the different context properties supported by the
system together with the ability to extend them, but also the time dimension of context in
terms of chronology and validity.

Property (C.P.). Although the relevant kind of context is dependent on the ubiquitous
web application which should be developed, customisation approaches should support a
set of built-in context properties. The following context properties (which are illustrated
in Figure 3 using UML [44]) are most often found in literature and considered to best
support the notion of ubiquity as defined above:

Figure 3 Context properties

Location: Location copes with the need for mobile computing and location-aware
services by capturing information about the location from which an application is
accessed.

Time: The context property time allows to adapt the application with respect to
certain timing constraints such as opening hours of shops or timetables of public
transportation.

86 G. Kappel et al.
Device: This context property refers to the demand of ubiquitous web applications
for anymedia in terms of multi-channel delivery and provides basic information
about the hardware and software capabilities of the device accessing the application.

Network: To allow adaptation on basis of the network it is necessary to provide
network context information in terms of, e.g., bandwidth or package losses.

User: Information about the user in terms of, e.g., demographic data, knowledge,
skills and capabilities, interests and preferences, goals and plans takes into account
the necessity of personalisation. Since the user is regarded being part of the context,
we follow an application-centric perspective thus monitoring all context properties
relative to the application.

Application: In addition to the previously stated context properties, all of them
representing information about the environment of the application, it is also required
for customisation purposes to get information about the state of the application itself,
with respect to a certain user [45].

It has to be emphasised that all criteria discussed in the following are applicable to each
context property described above.

Extensibility (C.E.). Certain applications may require also additional context
properties which are not built-in (e.g., current outside temperature or heartbeat rate). It is
not possible to foresee what kind of context properties that might be since the list of
context properties is virtually unlimited. Thus, it is required that built-in context
properties can be easily extended by additional ones. Note that this criteria deals with
system maintenance which is, as disclaimed previously, not the primary focus of this
paper.

Chronology (C.C.). Practice has shown that it is useful to broaden the view on context
by considering not only the current context at a given point in time but also historical
information (cf. Figure 3). This is necessary to be able to identify changes in context over
time. For example since the bandwidth might be constantly changing, it is more
important to be able to trace the average bandwidth instead of just having information
about the latest one. In contrast, allowing to adapt towards a restricted display size
requires information of the current device only. Besides historical context, it might be
useful to anticipate possible future states of a context, too. For example, concerning video
streaming, it is not only relevant how the bandwidth changed in the past, but also how the
bandwidth will develop or how stable it can be considered in the future, to be able to tune
the resolution of the video accordingly, thus guaranteeing a constant video stream.
Finally, since web applications enforce the notion of sessions, possibly consisting of a
sequence of transactions, context needs to be considered within the boundaries of
sessions, i.e., each session has its own context (cf. Figure 3).

Validity (C.V.). Context properties may not be valid during the complete period until
they are updated on basis of the environment. In a mobile scenario an example would be,
that, if location information does not change within a certain period, the device might not
be online any longer, thus, the location information might no longer be valid. Another
example would be the validity of opening hours, which for example, may change during
the seasons. Thus, it may be required to specify the period during which a context is valid
(cf. Figure 3).

Customisation for ubiquitous web applications 87
3.1.2 Representation of context

The representation of context comprises two important issues, namely mechanisms for
enhancing the reusability of the context representation and the level of abstraction at
which context is represented.

Reusability (C.R.). A customisation approach should allow to explicitly represent
context within the system, not just to intermingle context with adaptation or the
application itself. An explicit representation would allow for reusability of already
defined context across several applications. Another requirement for achieving reusability
is that context provided by the customisation approach should be generic, that is
application-independent. Application independent context may even be reused from
external sources, e.g., third-party providers. As illustrated in Figure 4, an example for
such an external source would be a Location Service converting a physical cell ID to an
XY-position in space and vice versa or a Geographic Information System (GIS) providing
among others geographical data about cities or streets for a given geographic latitude and
longitude.

Figure 4 Reusability and abstraction of context

Abstraction (C.Ab.). According to the level of abstraction where context properties are
represented it should be distinguished between physical context and logical context.
Whereas physical context is at a very low level of abstraction which can be directly
sensed from the environment (e.g., location in terms of a mobile phone’s cell ID), logical
context would enable to enrich its semantics thus making it meaningful for customisation
purposes (e.g., a street name). Logical context can be provided in terms of profiles
(e.g., describing certain hardware characteristics) which is most often the case, but can
also be built from existing physical or other logical context by applying different kinds of
abstraction or inference mechanisms, (e.g., certain geographical positions relate to the
same location in terms of a town). Figure 4 shows an example of a logical context model
for the physical context property location. It provides not only a variety of generic

88 G. Kappel et al.
information about the political and physical cartography using both, external sources as
described above and abstraction mechanisms in terms of sub-classing, but contains also
application specific context information.

Although highly desirable for many applications, the existence of logical context is
optional. Note that in the following, we use the term context for depicting both, physical
and logical context, not least since all criteria discussed in this section are applicable to
both, physical and logical context.

3.1.3 Acquisition of context

The acquisition of context can be characterised by the degree of automation considering
who is responsible for acquiring the context and the degree of dynamicity in terms of
when the context is acquired.

Automation (C.Au.). Concerning the acquisition of context, first it has to be defined
who is in charge for gathering appropriate context information, be it either a human
(manual acquisition) or the system (automatic acquisition) or a combination thereof
(semi-automatic acquisition). For ubiquitous web applications it is desirable to
automatically gather as much context information as possible to reduce user interaction.
Physical context properties may be sensed directly from the environment, logical context
may be automatically computed on the basis of other context information available.
Bandwidth available in the future is an example of context information constructed
automatically on bases of the history of bandwidth. Building user categories on the bases
of interaction patterns would be another example. Semi-automatic means that automatic
acquisition of a physical or logical context is accompanied with information entered
manually by, e.g., a user, a designer or the vendor of a device. Although, physical context
properties are per definition automatically gathered (cf. above), automatic acquisition is
not always possible (cf., e.g., a device not capable of providing location information or a
user which can be identified using a login procedure only). Logical context, especially
profile information has to be most often entered manually or semi-automatically or even
if it could be computed automatically, some necessary information could be missing
(cf., e.g., usage data is not available for a user accessing the application for the very first
time). The goal should be, of course, to design the application to be robust enough to deal
with missing context either by requesting the user to provide the context manually or by
providing a default context.

Dynamicity (C.D.). Another important aspect is when context acquisition takes place.
Considering the frequency of context changes, context can be either static, i.e.,
determined once at application start up (e.g., the device used to select the appropriate
interaction style), without considering any further changes or dynamic, i.e., determined
on every change during runtime (e.g., the bandwidth to adapt the resolution of an image
on the fly). In principle, to cope with the dynamic nature of ubiquitous web applications,
dynamic context acquisition is required. Although dynamic subsumes the static case, its
realisation has completely different implications for the application regarding, e.g.,
performance or data access. Thus, an additional explicit support of static context
acquisition could be desirable.

Customisation for ubiquitous web applications 89
3.1.4 Access to context

Mechanism (C.M.). Context has not only to be acquired and represented in a proper way,
but there must be also appropriate mechanisms in order to make context accessible to the
adaptation component of customisation as described below. In this respect one can
distinguish between pull-based and push-based approaches. Whereas the former requires
to poll context information as soon as it is required, the latter provides the current context
information (to the interested ‘clients’ in case of a subscription mechanism) as soon as
a context change occurred. It has to be emphasised that, for flexibility reasons, a
combination of both would be most desirable.

3.2 Adaptation

The second dimension of our evaluation framework is covered by the notion of
adaptation, characterised by the kind of adaptation, i.e., what changes have to be done,
the subject of adaptation in terms of what to change and the process of adaptation
characterising how adaptation is performed.

3.2.1 Kind of adaptation

The kind of adaptation subsumes not only built-in adaptation operations and possible
extension mechanisms but also reasons about their effect and complexity.

Operation (A.O.). Customisation approaches should support a library of built-in
adaptation operations which are appropriate for the built-in context properties (e.g., filter
some content, add links, change resolution of an image). For a taxonomy of adaptation
operations in the area of personalisation for hypermedia systems it is referred to [32] and
[21].

Extensibility (A.Ex.). Similar to built-in context properties, it is required that built-in
adaptation operations can be extended by user-defined adaptation operations to be able to
offer all necessary adaptations.

Effect (A.Ef.). Regarding the effect of built-in adaptation operations, three categories
should be supported. Built-in operations should be able to add certain parts to a web
application not present before (e.g., showing a personalised advertisement or executing
some additional service), removing certain parts from a web application (e.g., removing
all images) or perform some transformations (e.g., changing the modality by showing
textual descriptions instead of video clips). Considering these effects, it is interesting to
reason about the semantic value, which should and can be provided by a customised
service. The semantic value describes the quality of the output of the customisation for a
user relative to a non-customised version of the service. Analogously to the effect of
adaptation it may enhance the semantic value of a service, reduce the semantic value, or
it may preserve the semantic value, thus achieving semantic equivalence. Especially
personalisation and location-aware services endow the application with semantic
enhancement, in that each particular user is provided with specific added value. On the
other hand, the same application customised for the same user may (and certainly does)
look different when it is run on different devices and/or in different situations. This is
inevitable (for example it is impossible to show that beautiful applet on a PDA with no
virtual machine installed), but the service (or the added value) provided to the user should
nevertheless be the same. In this case customisation enables to maintain semantic

90 G. Kappel et al.
equivalence, which means that, despite the different context, the value provided to the
user should still be the same. The semantic value may be judged on either objective or
subjective bases. Some adaptations may result in an objectively semantically equivalent
version (e.g. translating a text from English into Sanskrit) but may be perceived by the
user as semantically not equivalent (supposing, e.g., the user is not able to understand
Sanskrit). An example where the information is reduced (thus objectively not equivalent)
but perceived as semantically equivalent by the user, is the transformation of a digital
audio into mp3 format. Though the latter includes only a subset of the information of the
digital audio version, the loss is (nearly) not perceivable by the user. Because of this
ambiguity, we do not judge the semantic value of an operation but rather the obvious
effect of the operation itself.

Complexity (A.C.). It should not only be possible to define a single adaptation
operation which should be performed due to a certain context, but also to define multiple
adaptation operations performed on the same or on different subjects (cf. below).
A transformation of the presentation of a movie from a video sequence into an alternative
series of scene pictures is an example of a complex adaptation since it consists of
disabling the video and enabling the presentation of the scene pictures [46]. In case that
the adaptation is complex, a proper precedence mechanism has to be provided to ensure
the consistency of the adaptation’s effect.

3.2.2 Subject of adaptation

The subject of adaptation can be characterised by looking at the level of the web
application which is effected by the adaptation as well as at the concrete elements and by
distinguishing the number of effected elements denoted by granularity.

Level (A.L.). First of all, each level of a web application should be allowed to be
subject of adaptation [32,42,47]. These levels, which are illustrated in Figure 5, comprise
content level (i.e. domain-dependent data), hyperbase level (i.e., the navigation structure),
and presentation level (i.e., the layout of each page together with user interaction
facilities). Content adaptation changes the information that is presented to the user by
adding or removing content (e.g., a filtering operation), hyperbase adaptation changes the
navigation structure (e.g., disabling a link), and presentation adaptation changes the way
information is presented to the user preserving semantic equivalence using a transform
operation (e.g., changing the modality). Unfortunately it is not always possible
to unambiguously categorise each adaptation operation according to these levels. For
example concerning compression operations it depends on the compression ratio if the
operation works at the content level reducing the semantic value or if it is part of the
presentation level preserving semantic equivalence.

Figure 5 Web application levels

Customisation for ubiquitous web applications 91
Furthermore, a certain adaptation operation may be local to one level only. Changing the
display colour of headlines in a page is an adaptation solely performed at the presentation
level, none of the other levels need to reflect that adaptation. In other cases it will be
required that adaptations done at a certain level are propagated to the other ones. For
example, should the content of the web application be reduced from an image rich
presentation to a simpler text based version, not only the content needs to be adapted but
likewise, the hyperbase as well as the presentation needs to reflect the changes, thus
being adapted accordingly. Adaptation should not only effect the web application but it
should also be possible to adapt the customisation itself, either by updating the context
(e.g., actualising the logical user context based on usage data) or by changing pre-defined
adaptations (e.g., enabling and disabling a certain adaptation).

Element (A.El.). Each of the levels mentioned above comprises a number of different
application elements like pages, links, access structures, input fields, lists, and media
types. For each of these application elements, it should be possible to apply different
adaptations. For example, video data may be adapted by means of compression methods
reducing the resolution or dropping frames whereas access structures may be adapted
from a guided tour navigation style to an index navigation style.

Granularity (A.G.). Another important issue concerns the granularity of adaptation,
indicating the number of application elements effected by a certain adaptation. The
granularity which should be supported ranges from micro adaptation to macro
adaptation. Whereas micro adaptation is concerned with fine-grained adaptations by
effecting a single application element only (e.g., disabling a certain link on a certain
page), macro adaptation means that rather large parts of an application are adapted, thus
effecting multiple application elements (e.g., changing the language effects every textual
application element visible to the user). Note that, there is no exact border between micro
and macro adaptation. In its most extreme form, macro adaptation simply means that
depending on the context, the whole application realising a certain service is substituted
by another one, thus better fitting the context.

3.2.3 Process of adaptation

Task (A.T.). The process of adaptation comprises a number of tasks which should be
separated in order to allow a fine-grained control about their automation and dynamicity
(cf. below). These tasks comprise initiation, proposal, selection, production, presentation
and reversion of the adaptation (cf. [21] for a similar categorisation).

Automation (A.A.). It has to be considered, similar to context, who is responsible for
performing the tasks necessary for processing the adaptation. For a certain adaptation, all
these tasks may be applied either fully automatically, so that the human cannot take
influence on the adaptation, manually, i.e., the user is responsible for the tasks or semi-
automatically meaning that the user controls if one (or more) of the tasks is (are)
performed automatically by the system or not. According to [48], systems supporting
fully automatic adaptations are called adaptive in contrast to adaptable systems, offering
more or less control possibilities for the user in terms of semi-automatic adaptation.
It would be, for example, reasonable that the system initiates adaptation by proposing an
additional index page, lets the user decide which links should be included and finally
performs the adaptation. As mentioned in [21], which form of automation to choose has
to be carefully weighed for each adaptation, taking convenience of the user, demands of

92 G. Kappel et al.
the user, irritation of the user and the consequences of false adaptation into account. The
replacement of images because of device restrictions for example, could be done
automatically, whereas the decision whether response time or resolution quality is of
higher importance should be made by the user. It is crucial in any case that the user is
able to understand the consequences of adaptations which could be facilitated by means
of proper tool support [49]. Different to automation of context, where manual acquisition
represents a reasonable alternative, manual adaptation is not feasible relating more to
re-engineering than to customisation.

Dynamicity (A.D.). Likewise the context, it is important to consider at which point in
time the adaptation tasks are performed which may not be the same. In general, it can be
distinguished between static and dynamic adaptation, meaning the tasks are performed
either at design time or at runtime [50]. Concerning dynamic adaptation, three more
options can be distinguished. First, the tasks can be done as soon as a context changes
(immediate dynamic adaptation). Second, adaptation can be done not before the user
requests the page which is subject to adaptation (deferred dynamic adaptation) [51].
Third, adaptation can be done periodically. An example for static adaptation is to
predefine two versions of an image, one with a high resolution intended to be presented
on desktop computers and a low-resolution black-and-white one intended for handheld
devices. The actual version of the image which is presented is then just chosen at runtime
either automatically or not. In contrary an image might be dynamically adapted relative to
the bandwidth currently available since the different network bandwidth situations can
hardly be pre-assumed. Similar to context, the dynamic nature of ubiquitous web
applications demands for dynamic adaptation allowing to parameterise the adaptation
operation appropriately, although static adaptation production may be useful for some
cases, especially due to performance reasons, degrading the adaptation operation to a
simple ‘select’. Dynamic presentation of adaptations on a change of context is used in
order to realise push-based adaptive services (e.g., pushing a special discount
advertisement to the user’s mobile device, if it is lunch time, and the user is nearby a fast
food restaurant which matches the user’s preferences). It has to be emphasised that the
criteria of automation and dynamicity are orthogonal to each other, meaning that each
combination would be reasonable in some sense with respect to the tasks described
above.

Incrementality (A.I.). Adaptation may be done from scratch, i.e., each time adaptation
is required, it is done based on the original (non-adapted) version of the service [38]. For
example, transforming a video to audio and to a series of picture scenes need to be
conducted from the original video. In contrary, adaptation may also be performed
incrementally, meaning that adapted versions are made persistent allowing that
subsequent adaptations are conducted on bases of the results of previous adaptations.
Thus, incremental adaptation could sometimes significantly reduce processing resources.
Despite this benefit incremental adaptation might not be applicable in all cases, e.g., if
lossy transformation are applied which cannot be reversed in later adaptation steps.
Consequently, both forms of adaptation should be supported by a system. Furthermore, it
has to be emphasised that incremental adaptation can also be seen as a form of adaptation
to change since in this way the system may continuously evolve over time. Although this
is not our focus we included this criteria because of the benefit described.

Customisation for ubiquitous web applications 93
3.3 Overall characteristics of customisation

Concerning customisation itself, the evaluation framework contains some general criteria
comprising the origin of the approach according to the distinction made in Section 2, its
major focus, its basic architecture, whether it is implemented or not, the technology used
and exemplary applications. Concerning the architecture, the crucial issue is if the
ubiquitous web application is aware of customisation in terms of knowing about context
and/or adaptation (referred to as internal customisation) or not (referred to as external
customisation) [15] (cf. Figure 6).

Figure 6 Alternative architectures

The benefit of internal customisation is that adaptations can be very powerful, effecting
every application element, since the application is designed for adaptation. External
customisation in contrast means that the application responds to a request and delivers the
result regardless of any customisation. Customisation is rather done in a successive step
on basis of the result, delivered by the application. In this case the application is
completely unaware of customisation, allowing to customise even already existing
applications. The potential of customisation, however, is rather limited. External
customisation can be realised using a proxy-based architecture where the proxy is
responsible for customisation. Because of the benefits and drawbacks of each alternative,
a customisation approach should support both options.

4 Comparison of customisation approaches

There are numerous customisation approaches reported in literature (for an overview, cf.,
e.g., [15,21,31,41]). This section describes 10 of these approaches, using the evaluation
framework described in the previous section. The rationale behind choosing these 10 was
to assort a representative mix of approaches having different origins, thus supporting
different concepts and having different application areas. Another intent was to evaluate
not only research approaches but also commercially available systems. Additionally to
recently proposed approaches, we included also older ones if their importance and
influence on others suggested so.

Each of the selected approaches is described in the following within a separate
subsection according to the criteria of the evaluation framework, thus giving an overall
understanding of each approach before discussing general findings of the evaluation in
Section 5. For readability reasons, the criteria are not always described in the same order.
To ensure, however, that every criteria can be traced in the description, the criteria are
referenced by means of their abbreviations given in Section 3. The results of the

94 G. Kappel et al.
evaluation are also summarised within three tables, one for describing general
characteristics of the customisation approach (cf. Table 1), another one dealing with
context issues (cf. Table 2) and finally a table regarding adaptation (cf. Table 3). The
criteria are rated using the following symbols:

 means that there is evidence that the approach provides explicit concepts to
support the criteria, or although not explicitly mentioned, it can be obviously
inferred that the criteria is supported

 means that the approach does not explicitly support a certain criteria

 means that the criteria cannot be applied meaningfully

In case that the concepts provided by an approach differ from their implementation, the
differences are mentioned within the description of the approach, ratings within the tables
are done on bases of the concepts.

Table 1 Overall comparison of approaches

4.1 The GUIDE system of Cheverst et al.

The GUIDE system of Cheverst et al. [52–55] stems from the area of location-based
services. The focus is to provide tourists with up-to-date and context-aware information
about a city via a PDA. Although the focus of the system is in providing location-based
services, a more comprehensive logical context model in terms of profiles is provided
(C.Ab.), distinguishing between so-called personal context in terms of information about
the user (e.g., preferences, current location and a history of already visited attractions

Customisation for ubiquitous web applications 95
(C.C.)) and so-called environmental context, comprising information about attractions
(e.g., links between nearby attractions, opening and closing times, relevance to user
interests) (C.P.). Thus, logical context is mainly specific to the tourism domain (C.R.).
There are no mechanisms to extend the pre-defined context properties (C.E.) nor
inference mechanisms to automatically derive higher-level logical context (C.Ab.) or a
validity period (C.V.). The current physical location context is gathered automatically
(C.Au.) at runtime (C.D.), although the user is able to manually enter the current location
in case that cell coverage is temporarily left. Logical context is, in principle, entered
manually, certain information about the user, e.g., interests is acquired semi-
automatically based on the interaction history (C.Au.). Context information is accessed in
a pull-based manner (C.M.).

Table 2 Comparison of context characteristics

Taking a look at the adaptation features of GUIDE, it is distinguished between coarse-
grained adaptation, e.g., changing the language of the descriptions and fine-grained
adaptations, e.g., presenting information about the current context or filtering/sorting
information depending on a certain context (A.O., A.Ef.). Thus a certain adaptation
cannot only effect a single but rather numerous web pages as is the case when changing
the language or when generating a complete guided tour (A.G.). In particular, the subject
of adaptation comprises all three levels (A.L.), focusing on text and link adaptations
without changing the modality (A.El.). Adaptations can be complex, e.g., location-based
filtering can be followed by a sorting operation before presenting the adapted web page to
the user (A.C.). Adhering to an integrated architecture, adaptations are realised by web
pages intermingling with proprietary HTML meta tags which allow to query the context
(e.g., determining the user’s interest in that particular attraction which has a certain
historical value associated) and to perform the appropriate adaptation (e.g., insert a user’s

96 G. Kappel et al.
location or insert nearby attractions). Extensibility of this pre-defined tag set is not
foreseen (A.Ex.). In principle, there is no separation between the different tasks of the
adaptation process (A.T.), adaptation is done fully automatic (A.A.). The tags are
interpreted on the fly, thereby realising dynamic adaptation (A.D.) as soon as the user
accesses a context-aware web page. Concerning dynamic adaptation however, there is a
separation of tasks with respect to the computation of nearby attractions. This production
task is done automatically, immediately after the location context has changed, whereas
the presentation itself is done upon a user’s request. Finally, incremental adaptation is not
supported (A.I.).

Table 3 Comparison of adaptation characteristics

4.2 The AHA System of De Bra et al.

The system ‘AHA!’ proposed by De Bra et al. [56] origins from the area of adaptive
hypermedia systems and represents a simple user modelling and adaptation tool which is
realised external to a web application. In particular, the approach is used for customising
online courses in the area of e-learning.

AHA! dynamically (C.D.) considers user as the only explicitly supported physical
context property (C.P.), although it is mentioned that other properties could be supported
as well (C.E.). Logical context information about the user is represented in terms of XML
files in a generic way (C.R.) and includes a knowledge level and an interest level which
can be expressed by Boolean, Integer or String values (C.Ab.). These levels can be
defined for each part of the web pages which should be adapted. Logical context can be
automatically updated by means of adaptation operations (cf. below) (C.Au.), as soon as

Customisation for ubiquitous web applications 97
the user accesses a web page (C.M.). Neither the chronology of context (C.C.) is
considered nor a validity period (C.V.).

The adaptation model which is again represented by means of XML incorporates
among others requirements and condition/action rules for arbitrary parts of the web pages
which should be adapted. The requirements are depicted by Boolean expressions,
indicating the desirability of links or fragments of pages for a user. Depending on the
evaluation results of these expressions links are enabled or disabled and fragments are
included or excluded (A.O.). These are the only adaptation operations provided by the
system, user-defined ones are not supported (A.Ex.). Consequently, subject of adaptation
are textual elements at the content level and links at the hyperbase level (A.L.), (A.El.).
The effects of these atomic adaptations (A.C.) comprise reduction and enhancement
(A.Ef.) of a certain web page (A.G.). Condition/action rules are used in order to perform
(possibly cascading) updates to the user model by, e.g., increasing/decreasing the
knowledge level (A.C.). Adaptation is done statically since there is no parameterisation
(A.D.) and automatically (A.A.) thus providing no separation between the different tasks
of adaptation. Adaptation is done non-incrementally (A.I.) and initiated as soon as a page
or parts thereof are accessed or the user model is updated.

4.3 The Context Toolkit of Dey et al.

The approach of Dey et al. [19,41,57,58] origins from the area of location-aware services.
Its main focus is to provide a comprehensive conceptual framework together with a
toolkit for representing and processing context information independent of an application,
thus establishing an external customisation architecture. The context toolkit which
realises only a subset of the frameworks’ concepts has been implemented using Java and
XML [59]. Various applications have been developed on basis of the toolkit, including,
e.g., an in/out board for indicating those persons which are inside a building, a
personalised information display which shows the user in front relevant information and a
context-aware mailing list sending e-mails only to those subscribed users which are
currently in a certain building.

The context properties supported by this approach comprise location, time, user and
status denoting the application state (C.P.). There is an explicit separation between
physical and logical context (C.Ab.). Physical context is represented by so-called context
widgets, which hide the details of actual context acquisition (e.g., done by means of
sensors) and provide a uniform interface to components using context, thus allowing
extensibility (C.E.). In addition, the system maintains a history of contexts (C.C.).
Concerning logical context, different abstraction mechanisms are provided to represent
both, application-dependent and generic context (C.E., C.R.). These mechanisms
comprise interpreters to produce ‘higher-level’ context information by combining
existing context properties and aggregators to gather and store logically related context
information available from different widgets at one place. For accessing context, polling
and subscription mechanisms are supported (C.M.). Context is determined dynamically
(C.D.) and acquired automatically, focusing on automatic inference of logical context
information (C.Au.). Context availability is explicitly mentioned but not further dealt
with, a validity period is not supported at all (C.V.).

Considering adaptation, pre-defined context services are introduced which are
responsible to execute actions on behalf of the application (A.O.). Context services can

98 G. Kappel et al.
be executed synchronously or asynchronously and divided into three categories
comprising recommendations (i.e., display of context information or proposal of
appropriate actions to the user), triggers (i.e., automatic execution of services) and
taggers (i.e., attachment of context information to objects for later retrieval). Currently,
the context toolkit provides only a couple of generic context services comprising the
display of choices and messages, conversion of text to speech, a beeper and an audio
switch. It is, however, possible to implement application-specific ones in terms of Java
programs (A.Ex.). The pre-defined context services (both, the suggested ones and the
implemented ones) are simple (A.C.), adding or transforming (A.Ef.) single text and
audio elements as well as services (A.El., A.G.) at the content level and the presentation
level (A.L.). Adaptation tasks are not separated (A.T.), the whole adaptation process is
done fully automatically (A.A.) and non-incrementally (A.I.). In principle, adaptation is
done dynamically, except concerning the audio switch, where the adapted versions are
already pre-defined before runtime (A.D.). Finally, it is interesting to mention that the
architecture of the system is reflective, in that the whole customisation capabilities of the
framework (i.e., widgets, interpreters, aggregators and services available) are maintained
within a registry called discoverer, thus providing a lookup mechanism for applications
using the context toolkit.

4.4 The AVANTI project of Fink et al.

Fink et al. [60] present the AVANTI project, coming from the area of adaptive user
interfaces. The goal of this project is to improve the overall access to a web application,
particularly considering the needs of persons with special needs. The system is employed
to provide hypermedia information about a metropolitan area (e.g., about public services,
transportation and buildings) for a variety of users.

Customisation is focused on user context, characteristics of devices and network are
mentioned but not further dealt with (C.P.). The issue of extensibility is not considered
(C.E.). Logical context information (C.Ab.) about users and user groups in terms of
interests, knowledge and abilities is explicitly represented (C.R.) by means of a
knowledge representation language similar to KL-ONE [61]. Logical context is acquired
semi-automatically (C.Au.). Within an initial phase, it is first of all entered by a human at
design time (C.D.), by exploiting the history of a user’s interaction with the system (C.C.)
it is further on refined at runtime (C.D.) using an inference mechanism called adaptation
rules. Access to context is performed in a pull-based manner (C.M.). A validity period is
not supported (C.V.).

Built-in adaptation operations (A.O.) are non-complex (A.C.) and allow to include,
exclude or transform (A.Ef.) parts of a certain web page (A.G.). An example for an
optional part would be the supplementary information on wheelchair accessibility,
an example for an alternative element would be a general vs. a detailed description or an
image vs. its textual description. Since the optional and alternative parts of a web page
are already pre-defined at design time, adaptation is done statically (A.D.). Extensibility
of adaptation operations is not an issue (A.Ex.). Subject of adaptation are textual
elements or images (A.El.) at all three levels of a web application (A.L.). The process of
adaptation is performed again by means of adaptation rules, some of its tasks are
separated (A.T.), thus allowing semi-automatic adaptation (A.A.). In particular, the

Customisation for ubiquitous web applications 99
system produces certain adaptations which can be further refined by the user. Finally,
adaptation is done non-incrementally (A.I.).

4.5 Fox et al.

The approach of Fox et al. [62,63] has its origin in the area of network adaptation. In this
respect they propose a proxy-based architecture that enables to perform on-demand
datatype-specific compression of data to a variety of client devices and network
constraints. The approach has been used for realizing different applications including a
modular proxy client, an image distiller, and a video stream distiller.

According to the overall focus the approach supports device and network
characteristics including effective processing capabilities, bandwidth, roundtrip latency,
and packet error (C.P.). Apart of those no context properties can be considered (C.E.).
Context is considered dynamically (C.D.) as soon as the client accesses the web
application (C.M.). Three methods of determining the context are discussed: explicitly
given context through the user, exploiting network profiles, and automatic monitoring of,
e.g., the network context (C.Au.), the context, however, is not explicit represented
consequently the criteria of reusability is not supported (C.R.). No inference mechanisms
are available to capture more abstract context (C.Ab.).

Dependent on the format of text, images and video streams (A.El.) transformations
and reductions (A.Ef.) with as little loss of the semantic value as possible are offered.
These non-complex (A.C.) adaptations are pre-defined (A.O.), no mechanism is offered
to include new adaptations (A.Ex.). All adaptations aim at preserving the service to the
user hence tailoring the presentation level only (A.L.). Since application elements of a
single page are customized adaptation takes place at a micro level (A.G.) only. Although
the adaptation is initiated automatically the user is able to engage into the adaptation
process (A.T.) by explicitly retrieving (A.A.) the original version of an application
element if desired thus reversing the adaptation. The adaptation is performed dynamically
(A.D.) on bases of the original web application (A.I.) each time a page is requested.

4.6 IBM Websphere Transcoding Publisher

IBM WebSphere [64], is a commercial web application development platform. The
Transcoding Publisher is part of IBM WebSphere supporting multi-channel delivery by
adapting services towards different client capabilities based on the ‘InfoPyramide’
described in [65,66]. Additionally, IBM WebSphere Personalisation and WebSphere
Everyplace Suite offer a personalisation component and a component enabling to realise
location-based services, respectively. For this an architecture realising both internal as
well as external customisation is implemented. Various information portals and
e-business solutions have been realised on bases of this approach.

The context considered comprises location, device, network, and user (C.P.).
The physical context information is dynamically (C.D.) enriched through separated
components, called Request Editors thus incorporating logical context (C.Ab.) at request
(C.M.) (e.g., given the user agent string in the request, browser capability information is
added). The logical context information is provided through profiles which are
maintained by the developer (C.Au.) through dedicated tools. In this way Request Editors
represent logical context information in a reusable way (C.R.). Furthermore, application

100 G. Kappel et al.
context can be included by means of page annotation. Through the Request Editors
additional context information can be included (C.E.) into the system. Explicitly, only the
current context of a request is considered (C.C.). Monitoring components are foreseen in
the platform framework which would allow the developer to consider also historical
information as well as the automatic generation of logical context information but no
explicit support is given (C.Au.). No validity constraints are addressed in the approach
(C.V.).

A series of so called Document Editors provide predefined adaptation operations
(A.O.). A text-engine allows to transform the presentation (A.L.) so it fits the constraints
of devices (e.g., images are transformed to links). Deck fragmentation allows to trim
pages to the demands of devices understanding WML [49] reorganising the hypertextual
structure (A.L.) of the application introducing links between smaller fractions of the
pages. Text clipping allows to operate on the content (A.L.) of the web application which
can not only be reduced but also transformed or even extended (A.Ef.). Furthermore,
image transcoding and multi-media transformations are offered. Thus, specific adaptation
operations are available to adapt text, images, video and voice data (A.El.) where the
effects of the predefined adaptations are partly defined within the logical profiles.
Additionally, a stylesheet editor is provided which allows the developer to specify
adaptations in terms of XSLT [59]. Furthermore, new adaptations can be introduced
(A.Ex.) in terms of servlets. Consequently, the approach offers complex adaptations
(A.C.) and allows to adapt the web application both at a micro as well as at a macro level
(A.G.). Adaptation is performed automatically (A.A.) without user interaction (A.T.)
after the web application has generated the response to the user’s request. The adaptations
are invoked dynamically (A.D.) on the basis of the original result of the web application
(A.I.) according to a given priority.

4.7 The GDA project of Nagao et al.

In the Global Document Annotation (GDA) project, Nagao et al. [67] propose semantic
annotation which aims at supporting versatile and intelligent web content particularly
focusing on multi-channel delivery. Semantic annotation allows to associate meta-data in
terms of XML tags to any web content including text, images, and videos. This meta-data
permits to automatically infer the underlying semantic structure of documents. Thus, this
approach supports the development of web applications offering transformation,
summarisation, and translation aiming at conserving as much semantic value to the user
as possible. A personalised summarisation system reflecting the readers’ interests and an
external transcoding system based on Web Intermediaries from IBM [64] (an extensible
http-proxy-server) have been realised.

The identity of the user (C.P.) is considered dynamically (C.D.) and combined with a
user profile providing additional information (C.Ab.). The user profile is represented
explicitly (C.R.) and maintained manually (C.Au.), independently of the web application.
In case that user preferences are not given, default values are assumed. Additionally,
application context comprising the semantic annotations is considered. As language for
semantic annotation a set of XML tags is proposed. Semantic annotations are stored
separately (C.R.) from the web content and are maintained manually (C.Au.).
The following kinds of annotation are distinguished: (i) linguistic annotation aiming at
making text machine readable, (ii) commentary annotation serves for annotating

Customisation for ubiquitous web applications 101
non-textual content like images, sounds, both kinds of annotations are manually (C.Au.)
provided, whereas (iii) multimedia annotation describing semi-automatically (C.Au.) the
content of digital videos. The user and the application context are the only context
properties made available and no new context properties can be included (C.E.). For both,
the user context and the application context only the current context is considered (C.C.)
as soon as the user accesses the web application (C.M.). The issue of invalid context is
not dealt with (C.V.).

Based on this context information the following generic adaptations are considered
(A.O.): (i) text transcoding, (ii) image transcoding, (iii) voice transcoding and (iv) video
transcoding (A.El.). Those adaptations are performed dynamically (A.D.) based on the
original data (A.I.). Text transcoding allows the user to summarise, thus reduce (A.Ef.)
the text by three means (A.A.): (i) automatic adaptation based on a learning mechanism
relying on a weighted feature vector, (ii) semi-automatic adaptation in terms of automatic
summary employing concurrence statistics relative to user specified words of interest and
(iii) manually adaptation by which users can specify words and phrases which should be
included in the personalized summary. Image transcoding allows to change image size,
colour and resolution (A.Ef.). Voice transcoding enables the user to transform (A.Ef.)
data to speech by employing a voice synthesis. Video transcoding allows summarisation
(A.Ef.) and transformation (A.Ef.) of video to text and video to speech performing a
combination of video to text and text to speech transformation (A.C.). It is not foreseen
that new adaptations can be introduced (A.Ex.). Individual application elements (A.G.)
are adapted when the user requests so (A.T.) thus keeping her in control of the adaptation.
Adaptation focuses primarily on the content and presentation level although new links are
inserted which allow activation of some adaptations (A.L.).

4.8 Oracle9i Application Server Wireless

Oracle offers a product called ‘Oracle9i Application Server Wireless’ which is part of the
Oracle Application Server [68]. Originating in the area of multi-channel delivery, the
focus is to provide a platform which enables not only to develop new web applications
independent of any device, thus realising an internal architecture, but also to adapt
existing web applications to be used from various devices using a proxy-based
architecture, thus supporting external customisation.

Oracle supports location, device and user context (C.P.) at a physical and a logical
level in terms of profiles (C.Ab.) and explicitly maintains them within relational tables
(C.R.). Depending on the availability of information about physical context properties,
their acquisition is done automatically or manually (C.Au.) at runtime (C.D.). Location
context can be manually defined by the user (in case that automatic localisation is not
possible) using so-called location marks which associate logical location information,
i.e., an address with coordinates. Device context and user context is identified
automatically by examining the request header. In case that the user context is not
available, an explicit login procedure is used. Logical user context is supported
by allowing to specify very basic user-related data and application-related data
(e.g., activated services), logical device context is restricted to some very basic
information about devices (e.g., screen-width and -height). It is neither possible to
incorporate additional physical or logical context properties into the system nor to change
the existing schema for logical context information (C.E.), with the exception of user

102 G. Kappel et al.
context supporting an appropriate API. Chronology of context (C.C.) or a validity period
(C.V.) are not supported, context is accessed in a pull-based manner (C.M.).

Adaptation is done by using so-called transformers which can be either XSLT-
stylesheets [59] or Java programs. For transformations (A.Ef.) there are a number of pre-
defined stylesheets for changing the markup language (e.g., WML, Tiny-HTML,
VoiceXML) and there are some operations in order to transcode images (e.g., format
conversions, rotations) (A.O.). Thus adaptation can be both, simple and complex (A.C.)
as well as micro (e.g., a single image) and macro (e.g., all pages of the application)
(A.G.), thus effecting text, image and audio elements (A.El.) at the presentation level of a
web application (A.L.). For transformers, the subject of adaptation is provided by so-
called adapters. Adapters are in fact Java programs responsible for gathering data from
external sources and converting these data into an intermediate XML format. For this, the
so-called Simple Result DTD specifies the elements of an abstract user interface
consisting of containers, menus, forms and tables. There are a couple of pre-defined
adapters for, e.g., HTML pages, XML pages, relational tables and plain text. It has to be
emphasised that appropriate APIs allow to implement arbitrary adapters and transformers
(A.Ex.). Adapters are associated with transformers by means of so-called ‘master
services’, which are mainly responsible for propagating user requests appropriately. Since
it is possible to parameterise master services, dynamic adaptation is supported which is
triggered on request (A.D.) and processed in an atomic step (A.T.) without any user
intervention (A.A.). The use of adapters allows to customise existing web applications
which are not aware of any customisation also to implement applications which directly
generate XML files according to the intermediate XML format. Finally, adaptation is
done in a non-incremental way (A.I.).

4.9 The OOHDM approach of Rossi et al.

Rossi et al. [69,70] propose a UML-based modelling method for web applications called
Object-Oriented Hypermedia Design Method (OOHDM) which has been recently
extended by personalisation concepts. The basic architecture of this approach adheres to
internal customisation and employs object-oriented design patterns [71] and condition/
action rules for representing the personalisation concepts. Currently, a visual modelling
tool is realized and the personalisation concepts are implemented using Smalltalk. The
abilities of OOHDM are demonstrated by modelling a conference paper review system
and several examples in the domain of electronic commerce.

Focusing on personalisation, OOHDM supports user context only (C.P.), extensibility
is not explicitly considered (C.E.). Chronology of context is captured by a shopping
history example which does not allow to reason about time spans of context (C.C).
A validity period is not supported (C.V.). Although context is represented explicitly, it is
primarily application-specific, thus impeding reusability of context (C.R.). It has to be
noted, however, that OOHDM deals with other forms of reusability by providing generic
mechanisms to model personalisation and by proposing a specific framework language
OOHDM-frame [72] for modelling generic parts of web applications. Concerning
abstraction of context, there is a separation between physical and logical context
focusing, however, on application-specific user profiles only (C.Ab.). Interestingly,
besides context information, the user profile has also knowledge about the personalisation
itself. Context acquisition is done automatically (C.Au.), either statically or dynamically

Customisation for ubiquitous web applications 103
(C.D.) Access to context is performed pull-based not before the personalized application
element is accessed (C.M.).

OOHDM provides built-in adaptation operations (A.O.) including filtering,
recommendation, and selection thus providing the full range of adaptation effects (A.Ef.).
These operations are extensible by application-specific ones using the Strategy pattern
(A.Ex.). Complex adaptation operations are supported (A.C.) using the Composite pattern
and as precedence mechanism conflict solvers are used. Adaptation can be done at each
level of a web application (A.L.) comprising the content level in terms adaptation of the
business logic, the hyperbase level comprising nodes and link topologies, and the
presentation level including interface objects and interaction styles (A.El.). Macro
adaptation is achieved through static adaptation whereas dynamic adaptation (A.D.)
enables adaptation at a micro level (A.G.). Adaptation is initiated automatically (A.A.),
neither task separation (A.T.) nor incremental adaptation is supported (A.I.).

4.10 Schmidt et al.

Schmidt et al. [73–75] propose a layered architecture supporting context recognition as a
foundation for mobile computing. Their aim is to make context detection independent of
the web application increasing flexibility and robustness. The approach allows to
influence all aspects of the web application through internal customisation but does not
rely on a specific technology. Prototypical applications are realized providing users with
better services utilizing this architecture and overcoming the restrictions of limited input
devices.

The proposed architecture comprises four layers. The sensor layer is responsible for
dynamically gathering information from physical sensors, i.e., electronic hardware
components that measure physical parameters, and logical sensors which gather
information from external host services. This also makes possible to include application
independent context information and to encapsulate the physical context. The
understanding of context is very broad covering beside user, time, location, and device
also temperature, touch intensity, accelerations etc. Although not explicitly enumerated
but due to the fact of a very broad definition of context comprising a three dimensional
space of environment, self and activity also network is part of the considered context
(C.P.). Furthermore, the approach is open to include any contextual information which
can be detected by a sensor (C.E.). The cue layer provide an automatic (C.Au.)
abstraction of the physical context (C.Ab.) since one or more cues may dynamically
(C.D.) transform values of one sensor. Cues are a function which transforms the
information reported by the sensor layer into a symbolic or sub-symbolic output. The
context layer represents the current context (C.C.) at an abstract level (C.R.) as a set of
two dimensional vectors indicating the situation and the certainty of its detection. This
allows also to address the validity of context information (C.V.). Most interestingly also
the approximation of context if not available is considered. The context information is
actualised independently of the user’s access (C.M.).

Three scripting primitives are offered at the application level to describe when
dynamic adaptation (A.D.) in terms of the invocation of an arbitrary function is
automatically (A.A.) initiated. The first scripting primitive ‘entering a context’ allows to
specify the activation of an adaptation when the context is identified the first time and the
second scripting primitive ‘leaving a context’ when the context is detected to have

104 G. Kappel et al.
changed. Finally, the scripting primitive ‘while in context’ allows to repeatedly activate
an adaptation as long as the context is valid. Beyond these activation primitives the
context information is made available to the application programmer. The realization of
the adaptation function is left to the application developer (A.Ex.). Consequently, no
statements on the character of the adaptation can be inferred.

5 Summary of results and lessons learned

In this section, we will briefly summarise the results of our comparison by pointing out
the major strengths and shortcomings of the approaches surveyed and reporting on
lessons learned. For this, the structure of this section follows the major dimensions and
criteria of our evaluation framework given in Section 3.

5.1 Context characteristics

Full range of context properties not considered. Interestingly, none of the approaches
considers all context properties proposed in Section 3. Depending on their origin, the
approaches concentrate either more on personalisation issues or more on mobile
computing. There can be, however, some clusters of context properties identified, which
are mostly considered together. A number of approaches concurrently take network and
device properties into account. Those two are often considered together which is
reasonable since mobile devices also imply a wireless connection carrying certain
network constraints. Besides these technical context properties some approaches consider
the physical space in terms of location and time. Personalisation seems to be always an
issue, also for those approaches having their origin in the mobile computing area.
It obviously has been acknowledged that the social context of a user is also relevant for
ubiquitous web applications, thus recognising the long tradition of personalisation. At
least simple user profiles are most often supported, tailoring location-based services,
multi-channel services or network adapted services to the user’s needs.

Potential of combining context properties hardly utilized. Although, as mentioned
before, most of the approaches support more than one context property, with respect to a
certain adaptation, these context properties are often considered independently from each
other (i.e., user for personalisation, location for location-aware services). The context for
a certain adaptation is rarely captured as a combination of context properties (e.g., a
certain user at a certain location may require other adaptation than at a different location
or than another user at this location). Supporting the latter would allow to consider
complex real-world situations as a basis for proper adaptation. Only the two approaches
focusing on context representation and processing Dey et al. [41] and Schmidt et al. [75]
provide mechanisms for combining context properties in terms of aggregators or cues,
respectively.

Chronology is dealt with only in terms of history. Chronology of context which is an
important means in order to make adaptations more appropriate, either by considering the
context’s history or by predicting future values is considered by a few approaches only.
In case that a context history is supported, it is mainly used in order to update the user
context. Future context is supported by none of the surveyed approaches. This shows that
current systems are mainly re-active instead of being pro-active in a sense that future
context situations are anticipated. This aspect is dealt with, e.g., in Ref. [76] where

Customisation for ubiquitous web applications 105
automatic data recharging facilities are realised which pro-actively push content to
mobile devices based on anticipated connection failures.

Validity of context is not an issue. Although obsolete information about a context
could lead to non-appropriate adaptations of the system (e.g., the list of nearby
restaurants is computed on basis of obsolete information about the current location of the
user), only one approach (cf. [75]) considers the issue of context validity. In particular, as
already mentioned, each context is assigned a value indicating the certainty of the
context’s occurrence.

Simple context abstraction. Most of the approaches represent logical context in terms
of profiles matched to the current context, which is a rather simple form of abstraction
mechanism. Inference mechanisms to derive higher-level context for better supporting
the adaptation process or the application itself are rarely considered. There are only two
exceptions, again Dey et al. [41] and Schmidt et al. [75], providing various inference
mechanisms comprising, e.g., interpretation or computation of standard derivation or
quartile distance.

Non-standardised context representation. Recently, also standardisation efforts have
been undertaken to collect requirements and provide representation techniques for
profiles using XML technologies [59], particularly focusing on device independence and
personalisation cf. [38–40]. None of the approaches evaluated in this survey, however,
employed these standards although most of them employ XML to represent profiles.
They rather rely on proprietary profiles having no common understanding of how the
context information is to be interpreted. For example, context information about a screen
size is sometimes interpreted either as a minimum screen size required by the application
or as a maximum screen size available at the device.

Automatic acquisition of logical context is predominant for user context only.
Automatic context acquisition is above all dealt with by approaches in the area of
personalisation, in that interaction history is used to update the logical user context in
terms of knowledge and interest properties. Other logical context such as device profiles
or location profiles is mostly gathered manually. Missing context information is, if at all,
dealt with in terms of default values or by requesting user input.

Push-based access to context is not exploited. Most approaches are request-based thus
exploiting the context information not before the response is generated. Changes in the
context cannot be immediately considered endangering the system to miss some
information vital for adaptation. Furthermore, the whole spectrum of possibilities offered
by push-technology can not be exploited which would be most relevant for frequently
changing context properties.

5.2 Adaptation characteristics

Extensibility of adaptation operations is not commonly recognised. Most of the
approaches focus on very special customisation problems (e.g., personalised text
summarisation or image compression) consequently offering a limited set of predefined
adaptation operations neglecting extensibility. Dey et al. [41] and Rossi et al. [69] as well
as the two commercial approaches surveyed fulfil the requirement of extensibility since
they offer a plug-able architecture which allows arbitrary adaptation components to be
integrated (e.g., employ user-defined stylesheets or Java programs).

106 G. Kappel et al.
Coarse-grained adaptation underdeveloped. Sometimes certain context situations

may require a comprehensive adaptation of the application. Especially to preserve
semantic equivalence in case of multi-channel delivery, complex adaptations at a macro
level are desirable, allowing to simultaneously customise different parts of a web page.
Such coarse-grained adaptations are supported by four approaches only, using either
stylesheets in order to adapt the presentation level by, e.g., changing the markup language
(cf. [68,64]) or by using object-oriented design patterns to transparently change,
e.g., complete navigation structures or the like (cf. [53,69]). It is without a doubt easier to
realise only adaptation of single elements of an application rather than allowing for
coarse-grained adaptation which requires to handle conflicts between a couple of
adaptations as well as to take care of their precedence.

Adaptation of interaction behaviour is not tackled. Adaptation at the presentation
level primarily focuses on topics like media transformation or changing the layout and
colour style of a page rather than on adapting the interaction behaviour of the application.
The reason for this lack could be that web applications are still seen as an information
medium thus mainly focusing on content and presentation, not as full-fledged software
applications where interaction facilities are a crucial means for achieving quality of
access. Mobile scenarios implying restricted input means particularly require the
attention of interaction behaviour adaptation. Nevertheless, it has to be emphasised that
there are already first steps in this direction. IBM’s Transcoding Publisher, e.g., allows to
automatically fragment a web application into different decks of a WML application for
mobile devices. Rossi et al. allow to change interaction behaviour by utilizing object-
oriented design patterns.

Adaptation tasks are machine controlled. Although, as already mentioned, automatic
adaptation bears the danger of irritating the user or can even lead to false adaptations,
most of the approaches adhere to automatism. Only [60,63,67] allow the user to supervise
the adaptation either by controlling in which form the adaptation should be done or to
revise the adaptation thus requesting the original web page.

Adaptation is done primarily from scratch. None of the approaches support
incremental adaptation, rather, each adaptation is done on the original version of the
application element. Thus, existing approaches do not take advantage of the performance
gains which could be achieved when re-using already adapted application elements.

6 Future work

Based on the evaluation results described in this paper we currently tackle the issue of
customisation in ubiquitous web applications from a software engineering point of view
[42,47,77–79]. Models of a ubiquitous web application prior to its construction are
essential for comprehension in its entirety, for communication among project teams, and
to assure architectural soundness and maintainability. There exist, however, only a few
methods dedicated to the modelling of traditional web applications neglecting to a great
extent ubiquity in terms of customisation.

Therefore, we currently develop a modelling method for ubiquitous web applications
focusing on customisation. Customisation is regarded as a new modelling dimension,
influencing all other tasks of web application modelling including content, hyperbase and
presentation design. As a prerequisite for supporting customisation, a set of generic
models is introduced comprising a context model and a rule model, together with several

Customisation for ubiquitous web applications 107
sub models using UML profiles [44] as the basic formalism. Generic means that the
models provide, in the sense of an object-oriented framework, not only pre-defined
classes and language constructs in order to model customisation but also allow to extend
them by means of sub-classing. The context model provides detailed information about
the environment of an application and the application itself, thereby triggering the actual
customisation as soon as the context changes. Physical context properties possess a
history and a validity period, and for each of them, a logical context model exists,
containing a generic part and an application-specific part. The rule model employs a rule-
based mechanism (cf., e.g., [80]) in terms of event/condition/action rules in order to
specify the actual customisation. Whereas the event allows for a push-based access to
actual context information, the condition allows for a pull-based access by querying the
physical and logical context models. For separation of concerns, the application being
modelled is divided into a stable part, comprising the default, i.e., context-independent
structure and behaviour and a variable, context-dependent part, thus being subject to
adaptations. A set of about 80 generic adaptation operations is provided for each
modelling element at each level of the web application which can be complemented by
application specific ones. These adaptation operations can be integrated into the
ubiquitous web application on the basis of adaptation hooks. A customisation toolkit in
terms of a customisation rule editor and browser supports an integrated modelling
process and facilitates reusability on the basis of a repository of customisation rules,
macros and patterns. Finally, a process is introduced, covering the whole task of
customisation modelling, with a special focus on reusability, herewith providing a
holistic view on the development process of ubiquitous web applications.

Acknowledgements

This work was partially funded by Ubiquitous Web Applications (UWA) an EU-funded
Fifth Framework Programme project (IST-2000-25131) and the strategic research project
Ubiquity Engineering at the Software Competence Centre Hagenberg (SCCH) which is
conducted in the framework of the Kplus Competence Centre Program funded by the
Austrian Government, the Province of Upper Austria, and the Chamber of Commerce of
Upper Austria.

References and Notes

1 Spohrer, J. and Stein, M. (2000) ‘User experience in the pervasive computing age’, IEEE
Multimedia, Vol. 7, No. 1, January–March.

2 Other categorisations of generations of web applications can be found in Ref. [3,4].

3 Powell, T. (1998) Web Site Engineering, Prentice Hall.

4 Conallen, J. (1999) ‘Modeling web application architectures with UML’, Communications of
the ACM (CACM), Vol. 42, No. 10, October.

5 Ehmayer, G., Kappel, G. and Reich, S. (1997) ‘Connecting databases to the web – a taxonomy
of gateways’, Proc. of the 8th Int. Conference on Database and Expert Systems Applications
(DEXA 97), September, France, LNCS 1308, Springer.

108 G. Kappel et al.
6 Pr ll, B., Retschitzegger, W., Sighart, H. and Starck, H. (1999) ‘Ready for prime time – pre-

generation of web-pages in TIScover’, Proc. of the ACM Conf. on Information and Knowledge
Management (CIKM), November, Kansas City, Missouri.

7 Kappel, G., Retschitzegger, W. and Schr der, B. (1998) ‘Enabling technologies for electronic
commerce’, Proc. of the XV. IFIP World Computer Congress, Vienna/Austria and
Budapest/Hungary, August/September.

8 Chakraborty, D. and Chen, H. (2000) ‘Service discovery in the future for mobile commerce’,
ACM Crossroads, Winter.

9 Weiser, M. (1991) ‘The computer for the 21st century’, Scientific American, Vol. 265, No. 3,
September.

10 Mattern and Sturm [11] uses the term pervasive computing to denote web applications running
on different commercially available devices.

11 Mattern, F. and Sturm, P. (2002) ‘From distributed systems to ubiquitous computing – the
state of the art, trends, and prospects of future networked systems’, Proc. Symposium trends in
der Informationstechnologie am Beginn des 21. Jahrhunderts, May, pp. 109–134.

12 Kleinrock, L. (1996) ‘Nomadicity: Anytime, anywhere in a disconnected world’, Mobile
Networks and Applications, Vol. 1, No. 4, January.

13 Gro mann, M., Leonhardi, A., Mitschang, B. and Rothermel, K. (2001) ‘A world model for
location-aware systems’, Informatik, Vol. 8, No. 5.

14 Rodriguez, J.R. et al. (2001) Extending E-business to Pervasive Computing Devices – Using
WebSphere Everplace Suite Version 1.1.2, IBM Redbooks, International Technical Support
Organisation, SG24-5996-00.

15 Badrinath, B., Fox, A., Kleinrock, L., Popek, G., Reiher, P. and Satyanarayanan, M. (2000)
‘A conceptual framework for network and client adaptation’, IEEE Mobile Networks and
Applications (MONET), Vol. 5, No. 4, pp. 221–231.

16 Kobsa A. (2001) ‘Generic user modeling systems’, User Modeling and User-Adapted
Interaction, Ten Year Anniversary Issue, Vol. 11, No. 1–2, pp. 49–63.

17 The notion of context can be found in various different fields of computer science, for an
overview, cf., e.g., [18].

18 Brézillon, P. and Pomerol, J.-Ch. (2001) ‘Modeling and using context for system
development: Lessons from experiences’, in Humphreys, P. and Brézillon, P. (Eds.): Journal
of Decision Systems, Vol. 10, No. 2, pp. 265–288.

19 Abowd, G.D. (1999) ‘Software engineering issues for ubiquitous computing’, Int. Conf. on
Software Engineering, Los Angeles.

20 Note that there are already a few personalisation approaches, considering more facets of
context than just user and usage data [21].

21 Kobsa, A., Koenemann, J. and Pohl, W. (2001) ‘Personalized hypermedia presentation
techniques for improving online customer relationships’, The Knowledge Engineering Review,
Vol. 16, No. 2, pp. 111–155.

22 In Ref. [23], this distinction is referred to as adaptation to difference, which is not necessarily
time-dependent and adaptation to change which is seen over time only.

23 Alatalo, T. and Siponen, M.T. (2001) ‘Towards the OWLA methodology for development of
open, Web/Wireless and adaptive hypermedia information systems’, Poster at ACM
HyperText.

24 Kniesel, G., Noppen, J., Mens, T. and Buckley, J. (2002) ‘Report on the first workshop on
unanticipated software evolution (USE)’, held in conjunction with The 16th European

Customisation for ubiquitous web applications 109
Conference on Object-Oriented Programming, ECOOP2002 Workshop Reader LNCS 2548,
Springer.

25 Good, M.D., Whiteside, J.A., Wixon, D.R. and Jones, S.J. (1984) ‘Building a user-derived
interface’, Communications of the ACM (CACM), Vol. 27, No. 10, October.

26 Carroll, J.M. and Aaronson, A.P. (1988) ‘Learning by doing with simulated intelligent help’,
Communications of the ACM (CACM), Vol. 31, No. 9, September.

27 Sleeman, D. and Brown, J.S. (Eds.) (1982) Intelligent Tutoring Systems, Academic Press, New
York, pp. 227–282.

28 Avery, C. and Zeckhauser, R. (1997) ‘Recommender systems for evaluating computer
messages’, Communications of the ACM (CACM), Vol. 40, No. 3, March.

29 Loeb, S. and Terry, D. (1992) ‘Information filtering’, Communications of the ACM (CACM),
December, Vol. 35, No. 12.

30 Conklin, E.J. (1987) ‘Hypertext: An introduction and survey’, IEEE Computer, Vol. 2, No. 9,
September.

31 Brusilovsky, P. (2001) ‘Adaptive hypermedia in Kobsa, A. (Ed.): User modeling and User
Adapted Interaction’, Vol. 11, No. 1/2, pp. 87–110.

32 Brusilovsky, P. and Maybury, M.T. (2002) ‘From adaptive hypermedia to adaptive web’,
Brusilovsky, P. and Maybury M.T. (Eds.): Special Issue on the Adaptive Web,
Communications of the ACM (CACM), Vol. 45, No. 5, pp. 31–33.

33 Want, R. and Schilit, B.N. (2001) ‘Expanding the horizons of location-aware computing
(Guest Editor’s Introduction)’, Computer, Vol. 34, No. 8, August, pp. 31–34.

34 In this respect, Makimoto and Manners [35] coined the term nomadic information systems
being accessible for users on the move using mobile devices.

35 Makimoto, T. and Manners, D. (1997) Digital Nomad, John Wiley Sons.

36 Want, R., Hopper, A., Falco, V. and Gibbons, J. (1992) ‘The active badge location system’,
ACM Transactions on Information Systems, Vol. 10, No. 1, pp. 91–102.

37 Eisenstein, J., Vanderdonckt, J. and Puerta, A. (2001) ‘Applying model-based techniques to
the development of UIs for mobile computers’, 5th International Conference on Intelligent
User Interfaces (IUI), ACM Press, pp. 69–76.

38 W3C (1999) PIDL – Personalized Information Description Language, W3C Note,
http://avocado.w3.mag.keio.ac.jp/TR/NOTE-PIDL.

39 W3C (2000) Composite Capabilities/Preference, Profiles, http://www.ccpp.org/.

40 W3C (2001) Device Independence Principles, W3C Working Draft, http://www.w3.org/
TR/di-princ/, September.

41 Dey, A.K., Salber, D. and Abowd, G.D. (2001) ‘A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications’, Anchor Article of a Special
Issue on Context-aware Computing, Human–Computer Interaction (HCI) Journal, Vol. 16,
No. 2–4, pp. 97–166.

42 Kappel, G., Retschitzegger, W. and Schwinger, W. (2000) ‘Modeling customizable web
applications – a requirement’s perspective’, Int. Conf. on Digital Libraries: Research and
Practice, November, Koyoto, Japan.

43 Kappel, G., Pr ll, B., Retschitzegger, W., Schwinger, W. and Hofer, T. (2001) ‘Modeling
ubiquitous web applications – a comparison of approaches’, Proc. of the Int. Conference on
Information Integration and Web-based Applications and Services (iiWAS), September, Linz,
Austria.

110 G. Kappel et al.
44 Unified Modelling Language 1.4 Specification (2002) Object Management Group (OMG),

http://www.omg.org/technology/documents/formal/uml.htm.

45 Note that, personalisation approaches often use the term “usage data” to refer to the
application states passed through by a certain user [16].

46 Note that in Ref. [21] the term ‘complexity of adaptation’ is used to denote if there is a direct
relationship between a context and a certain adaptation (e.g., selecting the text only mode vs.
selecting a proper adaptation on basis of different user interests and usage data). In our
framework, this criteria is covered by the abstraction criteria of the context and the complexity
of the adaptation.

47 Kappel, G., Retschitzegger, W. and Schwinger, W. (2001) ‘A holistic view on web application
development – the WUML approach’, Tutorial notes at 1st Int. Workshop on Web-oriented
Software Technology, June, Valencia, Spain.

48 Oppermann, R. and Specht, M. (1999) ‘A nomadic information system for adaptive exhibition
guidance’, Int. Conf. on Hypermedia and Interactivity in Museums, September, Washington.

49 McIlhagga, M., Light, A. and Wakeman, I. (1998) ‘Towards a design methodology for
adaptive applications’, 4th annual ACM/IEEE International Conference on Mobile Computing
and Networking, October, Dallas, TX, USA.

50 Kobsa et al. [21] use the term volatility to denote the dynamicity of adaptation but do not
distinguish between production of adaptation and presentation.

51 It has to be noted that this category is already included in the first one since the access of a
user results in a change of the application state. Because of its importance, however, there is
an own category for this scenario.

52 Davies, N., Cheverst, K., Mitchell, K. and Efrat, A. (2001) ‘Using and determining location in
a context-sensitive tour guide’, IEEE Computer, Vol. 34, No. 8, August.

53 Cheverst, K., Davies, N., Mitchell, K. and Friday, A. (2000) ‘Experiences of developing and
deploying a context-aware tourist guide: The GUIDE project’, Proc. of the 6th Int. Conference
on Mobile Computing and Networking (MOBICOM), Boston, MA, USA, ACM Press,
pp. 20–31.

54 Davis, N., Cheverst, K., Mitchel, K. and Efrat, A. (2001) ‘Using and determining location in a
context-sensitive tour guide’, IEEE Computer, August.

55 Cheverst, K., Mitchel, K. and Davis N. (2002) ‘The role of adaptive hypermedia in a context-
aware tourist guide’, Communications of the ACM (CACM), Vol. 45, No. 5, May.

56 De Bra, P., Aerts, A., Smits, D. and Stash, N. (2002) ‘AHA! the next generation’, ACM
Conference on Hypertext and Hypermedia, May.

57 Dey, A.K. and Abowd, G.D. (2000) ‘The context toolkit: Aiding the development of context-
aware applications’, Workshop on Software Engineering for Wearable and Pervasive
Computing, June, Limerick, Ireland.

58 Dey, A.K., Kortuem, G., Morse, D.R. and Schmidt, A. (2001) ‘Situated interaction and
context-aware computing’, Editorial, Personal Ubi Comp, Vol. 5, No. 1, pp. 1–3.

59 Means, W.S. and Harold, E.R. (2001) XML in a Nutshell, a Desktop Quick Reference,
O’Reilly.

60 Fink, J., Kobsa, A. and Nill, A. (1998) ‘Adaptable and adaptive information provision for all
users including disabled and elderly people’, New Review of Hypermedia and Multimedia,
Vol. 4, pp. 163–188.

61 Brachman, R.J. and Schmolze, J.G. (1985) ‘An overview of the KL-ONE knowledge
representation system’, Cognitive Science, Vol. 9, No. 2, pp. 171–216.

Customisation for ubiquitous web applications 111
62 Fox, A., Brewer, E., Gribble, S. and Amir, E. (1996) ‘Adapting to network and client

variability via on-demand dynamic transcoding’, ACM 7th International Conference on
Architectural Support for Programming Languages and Operating Systems.

63 Fox, A., Gribble, S.D., Chawathe, Y. and Brewer, E.A. (1998) ‘Adapting to network and client
variation using active proxies: Lessons and perspectives’, IEEE Personal Communications,
September.

64 IBM WebSphere Transcoding Publisher 4.0 Specification (2001) http://www-
4.ibm.com/software/webservers/transcoding/.

65 Mohan, R., Smith, J.R. and Li, C.-S. (1999) ‘Adapting multimedia internet content for
universal access’, IEEE Trans. on Multimedia, Vol. 1, No. 1, March, pp. 104–114.

66 Smith, J.R., Mohan, R. and Li, C.-S. (1998) ‘Content-based transcoding of images in the
internet’, Int. Conf. on Image Processing, October.

67 Nagao, K., Shirai, Y. and Squire, K. (2001) ‘Semantic annotation and transcoding: Making
web content more accessible’, IEEE MultiMedia, April–June, pp. 69–81.

68 Waddington, P. and Gill, P.J. (2002) ‘Oracle9i application, server wireless edition in action’,
Oracle Magazine, January–February.

69 Rossi, G., Cappi, J., Fortier, A. and Schwabe, D. (2001) ‘Seamless Personalization of E-
commerce Applications’, Proc. of the ER-Workshop on Conceptual Modeling Approaches for
e-Business (eCOMO2001), November, pp. 457–470.

70 Schwabe, D., Guimarães, R.M. and Rossi, G. (2002) ‘Cohesive design of personalized web
applications’, IEEE Internet Computing, Vol. 6, No. 2, pp. 34–43.

71 Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995), Design Patterns – Elements of
Reusable Object-Oriented Software, Addison-Wesley Pub Co.

72 Schwabe, D., Rossi, G., Esmeraldo, L. and Lyardet F. (2001) ‘Engineering Web Applications
for Reuse’ IEEE Multimedia, Vol. 8, No. 1, pp. 2–12.

73 Schmidt, A., Aidoo, K.A., Takaluoma, A., Tuomela, U., Van Laerhoven, K. and Van de
Velde, W. (1999) ‘Advanced interaction in context’, 1st Int. Symposium on Handheld and
Ubiquitous Computing, Karlsruhe, Germany, LNCS, Vol. 1707, Springer.

74 Schmidt, A., Beigl, M. and Gellersen, H.W. (1999) ‘There is more to context than location’,
Computer & Graphics,Vol. 23, No. 6, December, pp. 893–901.

75 Schmidt, A. and Van Laerhoven, K. (2001) ‘How to build smart appliances?’, IEEE Personal
Communications, Vol. 8, No. 4, August, pp. 66–71.

76 Cherniak, M., Franklin, M. and Zdonik, S. (2001) ‘Expressing user profiles for data
recharging’, IEEE Personal Communications, July.

77 Finkelstein, A., Savigni, A., Kappel, G., Retschitzegger, W., Kimmerstorfer, E., Schwinger,
W., Hofer, Th., Pr ll, B. and Feichtner, Ch. (2002) ‘Ubiquitous web application development
– a framework for understanding’, 6th World Multiconference on Systemics, Cybernetics and
Informatics, July, Orlando, Florida, pp. 431–438.

78 Kappel, G., Retschitzegger, W. and Schwinger, W. (2001) ‘Modeling ubiquitous web
applications – the WUML approach’, Int. Workshop on Data Semantics in Web Information
Systems, November, Yokohama, Japan.

79 Kappel, G., Retschitzegger, W., Kimmerstorfer, E., Schwinger, W., Hofer, Th. and Pr ll, B.
(2002) ‘Towards a generic customisation model for ubiquitous web applications’, Proc. of the
2nd Int. Workshop on Web Oriented Software Technology, June, Malaga, Spain, pp. 79–104.

80 Kappel, G. et al. (2001) ‘Bottom-up design of active object-oriented databases’,
Communications of the ACM (CACM), Vol. 44, No. 4.

